

TemPower PRO

Compact ACB ~

TERASAKI ELECTRIC CO., LTD.

www.terasaki.co.jp

Catalogue No. 24-I58E

The new standard for TERASAKI's air circuit breakers with compact body, high-performance

It's the TemPower PRO

Compact

User Friendly

Contents

1.	Product warranty	2
2.	Features ·····	4
3.	Ratings ······	8
4.	Appearance ······	11
5.	Available as standard·····	12
6.	Specifications	13
	1 Accessories for Draw-out Type	14
	2 Types of Mounting	15
	3 Spring Charged Operation	17
	4 Accessories for Spring Charged Operation	
	5 Trip Devices	
	6 Over-current Releases ······	
	7 Other Accessories ······	
	8 Operation Environments	
	9 Busbars connection	
	10 Recommendation for Busbars connection ·····	
7.	Outline Dimensions	
8.	Circuit Diagram	
	Technical and Application Data	
10.	Order Forms ·····	78

1 Product warranty

Please confirm the following product warranty before purchasing and using the product.

1. Warranty period and warranty coverage

If any failure found to be the responsibility of Terasaki Electric occurs during use of the product within the warranty period, the product shall be repaired at no cost via the sales representative or Terasaki Electric sales office. However, if repairs are required on-site at domestic or overseas locations, expenses to send an engineer will be charged.

[Warranty period]

The warranty period of the product shall be for 12 months after the date of purchase or delivery to the designated place.

However, the maximum free warranty period is 18 months from the date of manufacture, with a maximum distribution period of 6 months after shipment.

The free-of-charge warranty period of the repaired product will not be extended beyond the free-of-charge warranty period before the repair.

[Warranty coverage]

- The primary failure diagnosis should be performed by users. However, if required by users, Terasaki Electric or Terasaki Electric Sales office may be able to perform the diagnosis.
- 2) The coverage shall be limited to ordinary use within the usage state, usage methods, usage environment, and other conditions which follow the instructions and precautions given in the instruction manual, user's manual, and caution labels on the product.
- 3) Even within the warranty period, repair cost shall be charged for the following cases.
- Tailure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by selection of hardware or software design on the user side.
- ② Failure caused by modifications, etc. to the product by the user without any approvals from Terasaki Electric.
- ③ In case Terasaki Electric product is assembled into a user's device, failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
- Failure that could have been avoided if the maintenance described in the user's manual has been performed.
- ⑤ Failure caused by external irresistible forces such as fires or abnormal voltages, and failure caused by natural disasters such as earthquakes, lightning, wind and water damages.
- ⑥ Failure caused by reasons unpredictable based on scientific technology standards at the time of shipment from Terasaki Electric.
- ② Any other failure found not to be the responsibility of Terasaki Electric or that admitted not to be so by the user.
- *In addition, the warranty applies only to the product delivered. It does not apply to the any damage that is caused by the failure of the product.

2. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the warranty period, Terasaki Electric shall not be liable for compensation to:

- 1) Damages caused by any cause found not to be the responsibility of Terasaki Electric.
- 2) Loss in opportunity, lost profits incurred to the user by failures of Terasaki Electric product.
- Damages whether foreseeable or not, secondary damages, compensation for accidents, and compensation for damages to products other than Terasaki Electric products, caused by exceptional situations.
- Compensation for cost occurring secondarily from replacement work by the user, maintenance of on-site equipment and start-up test run and other operations.

3. Product applications

- When using the products listed in this catalogue, the following conditions must be confirmed and obeyed.
 The product must be used so that a failure that occurs to the product does not lead to a serious accident. When a damage or failure occurs, the external backup function or fail-safe function must be executed systematically.
- 2) The products listed in this catalogue are designed and manufactured as general-purpose products for application to the general industry field. When considering the use of our products for special applications such as the following equipment and systems, please contact Terasaki Electric sales office to confirm the specifications.
 - ① The use that has a significant influence on the public facilities such as nuclear power plants and other power plants of power companies.
 - ② The use for railway companies, government offices, etc. that require to build the special quality assurance system.
 - ③ The use for aerospace equipment, medical equipment, railway equipment, combustion and fuel equipment, passenger vehicles, manned transportation equipment, recreational equipment, safety equipment, and air conditioner for servers and the cooling facilities that are expected to have a significant influence on life, body, and property.

4. Safety Notices

Before installing, using, or servicing products, read these "Safety Notices" and familiarize yourself with all aspects of products, safety information and precautions.

■ Mounting Precautions

Caution

- Electrical work must be done by competent persons.
- Do not place the ACB in such an area that is subject to high temperatures, high humidity, dusty air, corrosive gasses, strong vibration and shock, or other unusual conditions. Mounting the ACB in such an area could cause a fire or malfunction.
- Be careful to prevent foreign objects (such as debris, concrete powder, dust, chippings, and iron powder) and oil or rain water from entering the ACB. These materials inside the ACB could cause a fire or malfunction.
- Prior to commencing any work on the ACB, upstream circuit breaker or the like to isolate all sources of power/ voltage. Otherwise, electric shock may result.
- Fix the draw-out cradle of the ACB firmly on a flat, level surface using mounting screw. Otherwise, the draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- For 4-pole ACBs, be sure to connect a 3-phase, 4-wire neutral conductor to the N-phase pole (on the right end). Otherwise, an overcurrent may hinder the ACB from tripping, resulting in a fire.

■ Transportation Precaution

<u> î</u> Danger

 Never stand under the ACB that has been lifted or suspended a lifter of lifting attachments. The weight of the ACB may cause sereious injury.

Operation Precaution

Danger

- Never touch live terminal parts (main terminals or control terminals). Otherwise, electric shock may result.
- Do not leave the ACB body in the draw-out position.
 If the ACB body is accidentally dropped, its weight may cause serious injury.

[Meaning of indication]

	<u> </u>
<u>↑</u> Danger	A danger notices with this symbol indicates a potentially hazardous situation which, if not avoided, may result in death or serious injury.
! Caution	A caution notices with this symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury and/or property danage.

5. Ordering information

Products and specifications appearing in this catalogue are subject to change (including discontinued sales) due to product improvements and other reasons, therefore contact us or your local dealer prior to using, considering or ordering the shown products to confirm that the information in this catalogue is the up-to-date.

Even more compact

Developed with the same external dimensions for the 630AF to 1600AF of draw-out type, making it even more compact than the previous product.

> Now 48% in volume and 49% in weight compared to the previous product. Can be mounted in a switchboard compartment of 400mm width, height and depth.

Even more convenient

The direction of rear connection terminals (horizontal, vertical) can be changed by the customer.

Easy to change by simply removing two bolts and rotating by 90°.

*In case of AX120S and AX120H, rear connection terminals can not be changed.

Horizontal terminals

Vertical terminals

Even safer

The mechanical reset facility that was as an option with the previous product is now supplied as standard.

The mechanical reset is an interlock function that prevents the ACB from being ON again if it has been tripped due to an over-current release, until the reset button is pressed after eliminating the cause.

The mechanical reset can be enabled simply by setting the mechanical reset setting dial on the front of the ACB to "MANUAL".

New closing spring charge indicator display

The previous product only displayed the charge status of the closing spring, but **TemPower PRO** now also shows whether or not the ACB can be closed.

This provides a visual indication that the ACB is not in a ready to close state after the interlock or undervoltage trip device has been activated, a feature that was not available with the previous product.

State	Closing spring charge	Discharged	Charge	Charge
State	ACB State	Not ready to close	Ready to close	Not ready to close
	Indication (<i>Tem<mark>Po</mark>wer</i>)	DISCHARGED	CHARGED	CHARGED
	Indication (TemPower PRO)	ON OK DISCHARGED	CHARGED ON OK	CHARGED ON OK

The safety functions below are from the previous product

- ① No extra arc space required for clearance (For draw-out type)

 Almost all arc energy is dissipated inside when tripping, so there is no need to include space for arc gases on the upper part.
- 2 Double shunt trip devices

Two continuously-rated shunt trip devices can be mounted, allowing backup trip operation to be built. This makes it suited to critical circuits where reliability is required.

- Can be used with reverse connections like the previous product.
 Power receiving and distribution from either top or bottom terminals.
- Quick connection terminals used for control circuit terminals

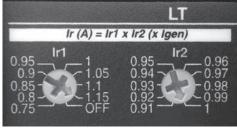
Eliminates the need to tighten screws with a screwdriver, making connection work much faster. (Available lead wire size: 0.6 – 2.5mm²,

Finished OD: 3.3mm ø or less)

2 Features — Designed for greater convenience and higher safety

Even more convenient

• Standard type and Smart type of Over-Current Release (OCR) are available depends on the application.


Standard type

Smart type

[Standard type]

- ① Color display as standard. A range of information can be displayed with three types of display modes.
- ② Three types of general protection specifications are available, as well as a generator protection specification.
- 3 The long time-delay trip current settings can be configured in detail to suit the applicable load conditions. Current settings for the standard type long time-delay trip function are configured differently to previous methods, and uses a combination of two dial settings. This approach allows the applicable load conditions to be configured in more detail.

OCR Setting dials for generator protection

AOX-LI, AOX-LSI, AOX-LSIG······ $I_r = I_r 1 \times I_r 2$
--

			Setting value										
ĺ	/ _r 1	0.4	0.5	0.6	0.7	0.8	0.9	0.95			OFF		
	I _r 2	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1		

 $AOX-LSIR \cdots I_r = I_r 1 \times I_r 2 \times I_{qen}$

						Setting	yalue				
ĺ	/ _r 1	0.75	0.8	0.85	0.9	0.95	1	1.05	1.1	1.15	OFF
ĺ	I _r 2	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1

[Smart type]

- ① Includes a measurement function for circuit information, in addition to protection functions. This enables measurement of various items such as current, voltage, power, energy, power factor, frequency, total harmonic distortion, harmonic current, and harmonic voltage.
- 2 Measurement accuracy has been significantly improved compared to the previous product, with reading accuracy that complies with the IEC61557-12 international standard.
 - This ensures a high level of accuracy, with ±0.5% for current and voltage measurements, and ±1% for active power measurements.
- 3 Contact temperature monitoring is available as an optional function. The temperature can be set from 105°C to 155°C (in 10°C increments), and an alarm output is triggered when the contact temperature of the main circuit exceeds the set temperature.
 - Combining this with communication functions also allows real-time monitoring of contact temperature.
- (4) A Dual settings mode is now available.
 - Various combinations of protection setting values for long time-delay trips, short time-delay trips, instantaneous trips, and ground fault trips can be stored in two types of setting value groups, "Setting A" and "Setting B," which can be switched and used as required.

Smart Type OCR has more extensibility

TemView PRO

Remote display

Connecting the TemView PRO remote display with the TemPower PRO using the special cable and mounting it on the switchboard panel allows the smart type OCR measurement value to be checked using the panel.

* Adaptor (Type: TVPAA) is necessary for the connection between remote display and smart type OCR. When ordering the remote display, be sure to order an adaptor as well.

TemCom PRO

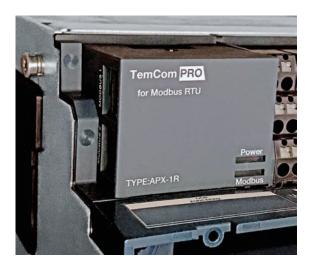
Communication module

Circuit information measured with smart type OCR can be transmitted remotely by using the TemCom PRO communication module, allowing a communication network that can be monitored and managed to be built. Two types of communication protocols are available: MODBUS RTU (type: APX-1R) and MODBUS TCP (type: APX-1T).

APX-1R

Protocol	Modbus RTU
Address	1 – 247 (Default seting value : 1)
Baud rate	4800/9600/19200/38400 bps (Default seting value : 19200 bps)
Parity	None/ Even / Odd (Default seting value : Even)
Stop bit	1bit (fixed)
ADV 1T	

APX-1T


Protocol	Modbus TCP
DPHC settings	OFF/ON (Default seting value : ON)
IP address	0.0.0.0 - 255.255.255
settings	(Default seting value : 172.16.1.1)
Subnet mask	0.0.0.0 - 255.255.255
settings	(Default seting value : 255.255.255.0)
Electrostatic	0.0.0.0 - 255.255.255
gateway settings	(Default seting value : 0.0.0.0)

Backup power supply available in the event that control power is lost.

This ensures that the following functions remain available even if control power is not being supplied.

- 1) Clock function
- 2) Accident screen displayed if accident occurs

Built-in barttery

3 Ratings

Saries	Series		Ctondo	urd.	Ctondo	ard	Ctondo	rd	Ctondo	rd	Ctondo	
Note Marker Mar				iiu		aiu		iiu		iu		u
Pate of current (many (I _m) (A) A) SLS, IEC 38, IEN 60, ASIN 2872 500 500 500 1000 1250 1250 1000 1250 1				<u> </u>		2	_				_	
Marine		FN® AS/NZS®				•		<u> </u>				
Neutral pole an perse frame (A)		, 2110, 110,11200										
Number of poles 3												
Rated primary current of over-current release (pn)(A)				4		4		4		Δ		ΙΔ
Section Sect		ρ [/_](Δ)	-			7		7			- 	
Rated primary current of over-current release (f _{gen} A)	• •				000		1000		1230		1000	
Light Separation 100 1000 1				100</td <td></td> <td><800</td> <td>- <u> </u></td> <td><1000</td> <td>750<i><1</i></td> <td><1250</td> <td>960<1</td> <td><1600</td>		<800	- <u> </u>	<1000	750 <i><1</i>	<1250	960<1	<1600
		C Ligens(N)	-	-	100=1	gen=000	000=10	jen=1000	750 = 1g	en=1230	300 = /g	en=1000
March September March September March September March September March September March September Sept			400 <1g	gen=030								
Flated perational voltage U_a	- 3		1000		1000		1000		1000		1000	
		<u>'</u>										
JIS3 , IEC, EN, AS		ring can [kA neak]	030		- 050		030		030		030	
			42/88 2		42/88 2)	42/88 2		42/88 2		42/88 2	
March Marc												
NK	[,cn](vy)											
NK												
LR, AB, BV	NK VC											
LR, AB, BV	NIC AC			<u> </u>								
Solidar Soli	LB AB BV AC			:								
JS③, IEC, EN, AS	EH, AB, BV			<u>'</u>								
	IISM IEC EN AS											
Add Sol												
NK	['CS](NA)											
NK												
A50V A50V A50V A291.3	NK VC											
LP, AB, BV	NK AC			<u> </u>								
Source S	LR AR RV AC											
New Stand New	LIT, AD, BV											
Rated impulse withstand voltage [U _{imp}] (kV) (Main circuit) 12 12 12 12 12 12 12 1	Payarsa cannocted	430 V										
Rated short time withstand current 1s 50 50 50 50 50 50 50 10 1		(Main circuit)										
Cow [kA rms.] 3s 24 24 24 24 24 24 24 2												
Rated latching current (kA) 36 36 36 36 36 36 36 3												
Total breaking time (s) Closing operation time Spring charging time (s) max. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			-									
Closing operation time Spring charging time (s) max. 8												
Spring charging time (s) max.			0.00		0.00		0.00		0.00		0.00	
Closing time (s) max. No. of operating cycles (9)			Q				Ω		ο		Q	
Mechanical life									- 			
Second Rechanical life			0.00		0.00		0.00		0.00		0.00	
Electrical life			15000		15000		15000		15000		15000	
Meight (kg) for draw-out type 8000 <t< td=""><td></td><td>440\/ AC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		440\/ AC										
Weight (kg) for draw-out type 37 45 36 276 346 276 346 276 346 276 346 276 346 276 346 276 346 276 345 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 312.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 </td <td>Electrical life</td> <td></td>	Electrical life											
Cutline dimensions (mm) (For vertical terminals and horizontal terminals.)	Weight (kg) for draw out type	030 V AC		45		45		15		45		45
Fixed type a		horizontal terminale	37	143	- 3/	43	3/	143	37	140	3/	140
b 312.5 312.5 312.5 312.5 312.5 197.		•	276	246	276	246	276	246	276	246	276	246
Draw-out type a 288 358 288 358 288 358 288 358 288 358 288 358 288 358 288 358 288 358 281 291 291 291 291 291	rixed type		-	340		340		340		340		340
Draw-out type												
Draw-out type												
b 322 322 322 322 322 322 322 291 291 291 291	Drow out type			250		250		250		250		250
291 291 291 291 291 291 291 291 291 291	Diaw-out type			338		338		338		338		336
	4	u	43		_ 43		_ 43		45		45	

- $\ensuremath{\textcircled{1}}\xspace$: Values in open air at 40°C (45°C for marine applications)
- 2 : For vertical terminals.
- $\ensuremath{\mathfrak{J}}$: 4poles ACBs without Neutral phases protection can not apply IT earthing system.
- 4 : Comply with JIS C 8201-2-1 Ann.1 Ann.2.
- ⑤ : Comply with IEC60947-2.
- 6 : Comply with EN60947-2.
- ① : Comply with AS/NZS IEC60947-2.

- ® : Contact TERASAKI for the details about the application for IT system with special specification.
- Expected service life based on endurance test. The service life of ACB depends on the working and environmental conditions.
- ① : For OCR specifications, please refer to pages P.22 to P.46.
- ①: AX120S and AX120H only have Fixed type.

Standard	High fault	High fault	High fault	High fault	High fault	High fault
2000	630	800	1000	1250	1600	2000
AX120S	AX106H	AX108H	AX110H	AX112H	AX116H	AX120H
2000	630	800	1000	1250	1600	2000
_	630	800	1000	1250	1600	_
2000	630	800	1000	1250	1600	2000
3 4	3 4	3 4	3 4	3 4	3 4	3 4
2000	400	800	1000	1250	1600	2000
	630	_	_			
_	240≦I _{gen} ≦400 400 <i<sub>gen≦630</i<sub>	480≦/ _{gen} ≦800	600≦I _{gen} ≦1000	750≦I _{gen} ≦1250	960 <i>≦I</i> _{gen} <i>≦</i> 1600	_
1000	1000	1000	1000	1000	1000	1000
690	690	690	690	690	690	690
42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2
42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2
50/105	66/145.2	66/145.2	66/145.2	66/145.2	66/145.2	66/145.2
50/105	66/145.2	66/145.2	66/145.2	66/145.2	66/145.2	66/145.2
_	42/91.3	42/91.3	42/91.3	42/91.3	42/91.3	_
_	66/160	66/160	66/160	66/160	66/160	_
_	42/91.3	42/91.3	42/91.3	42/91.3	42/91.3	_
_	66/160	66/160	66/160	66/160	66/160	_
42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2
42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2	42/88.2
50/105	55/121	55/121	55/121	55/121	55/121	55/121
50/105	55/121	55/121	55/121	55/121	55/121	55/121
_	42/91.3	42/91.3	42/91.3	42/91.3	42/91.3	_
_	55/120	55/120	55/120	55/120	55/120	
	42/91.3	42/91.3	42/91.3	42/91.3	42/91.3	
_	55/120	55/120	55/120	55/120	55/120	
Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	12	12	12	12	12	12
50	55	55	55	55	55	55
24	30	30	30	30	30	30
36	36	36	36	36	36	36
0.08	0.08	0.08	0.08	0.08	0.08	0.08
8	8	8	8	8	8	8
0.08	0.08	0.08	0.08	0.08	0.08	0.08
15000	15000	15000	15000	15000	15000	15000
4000	8000	8000	8000	8000	8000	4000
4000	8000	8000	8000	8000	8000	4000
18 ① 22 ①	37 45	37 45	37 45	37 45	37 45	18 ① 22 ①
				1.5	1	1 1 1 1
276 346	276 346	276 346	276 346	276 346	276 346	276 346
312.5	312.5	312.5	312.5	312.5	312.5	312.5
197.5	197.5	197.5	197.5	197.5	197.5	197.5
81.5	42.5	42.5	42.5	42.5	42.5	81.5
_	288 358	288 358	288 358	288 358	288 358	_
_	322	322	322	322	322	_
_	291	291	291	291	291	_
_	49	49	49	49	49	

Ratings

Switch-disconnectors

Туре					
Rated current (max) [/ _e] (A)	JIS3,	IEC4),	EN(5), A	AS/NZS6
12		Marine)		
Neutral pole an	nperes frame ((A)			
Number of pole	s				
AC Rated insul	ation voltage [U _i] (V. 50)/60Hz)		
Rated operation	nal voltage [U_{ϵ}] (V. 50/	60Hz)		
Utilization cate	gory JIS C 820	1-3 IEC	60947-3		
Rated impulse	withstand volta	age [<i>U</i> im	p] (kV) (Main ci	rcuit)
Rated short circ	cuit making ca	pacity	AC	690V	
[/ _{cm}] (kA peak)				440V	
Rated short tim	e withstand cu	ırrent	AC	690V	1s
[/ _{CW}] (kA rms.)				440V	1s
Reverse conne	cted				
Closing ope	eration time				
Spring charging	g time (s) max				
Closing time (s)) max.				
No. of opera	ating cycles	6			
Mechanical life	without mainte	enance			
Electrical life wi	thout mainten	ance		440V	AC
				690V	AC
Weight (kg) for	draw-out type				
Outline dimensi	ons (mm) (For ver	tical term	inals and	horizonta	al terminals.)
Fixed type				а	
	р	1 7	Þ	b	
			h .	С	
	- a -	C	⊣ •d	d	
Draw-out type	, †			a	
	b		-	b	
			٦	С	
	<u>a</u> →	C	l∗ū	d	


630		800		1000		1250		1600		
AX106[D	AX1080)	AX1100	AX110D		AX112D)	
630		800	800		1000		1250			
630		800		1000	1000		1250			
630		800		1000		1250		1600		
3	4	3	4	3	4	3	4	3	4	
1000	•	1000		1000		1000		1000		
690		690		690		690		690		
140		440		440		440		440		
AC-23		AC-23		AC-23		AC-23		AC-23		
2		12		12		12		12		
38		88		88		88		88		
121		121		121		121		121		
12		42		42		42		42		
55		55		55		55		55		
Yes		Yes	Yes		Yes		Yes		Yes	
3		8		8		8		8		
0.08		0.08		0.08		0.08	0.08			
15000		15000		15000		15000		15000		
3000		8000		8000		8000		8000		
3000		8000		8000		8000		8000		
37	45	37	45	37	45	37	45	37	45	
	'				<u>'</u>					
276	346	276	346	276	346	276	346	276	346	
312.5	'	312.5	_	312.5	<u>'</u>	312.5	<u> </u>	312.5		
97.5		197.5		197.5		197.5		197.5		
12.5		42.5		42.5		42.5		42.5		
288	358	288	358	288	358	288	358	288		
322		322	<u> </u>	322		322		322	<u>'</u>	
291		291		291		291		291		
49		49				49		49		

- ① : Values in open air at 40°C (45°C for marine applications)
- ②: For vertical terminals.
 ③: Comply with JIS C 8201-3.
 ④: Comply with IEC60947-3.
- ⑤ : Comply with EN60947-3.
- (a): Comply with AS/NZS IEC60947-3
 (b): Expected service life based on endurance test. The service life of ACB depends on the working and environmental conditions.

Appearance (For draw-out type)

Available as standard

ON-OFF button cover

An ON-OFF button cover prevents inadvertent or unauthorized operation of the ON or OFF button.

It can be locked with one padlock (with ø6 hasp)

Note: The padlock is not supplied.

Spring charge indicator

This switch can be used to indicate that the closing springs have been fully charged. *This accessory is included in the motor charging type. Manual charging type is not equipped this accessory.

Ratings of Spring charge indicator

	Groups	Voltage (V)	Current (A)
Utilization category AC-12/DC-12 ①	Standard	AC 250 ②	16.0
		DC 250 ③	5.0

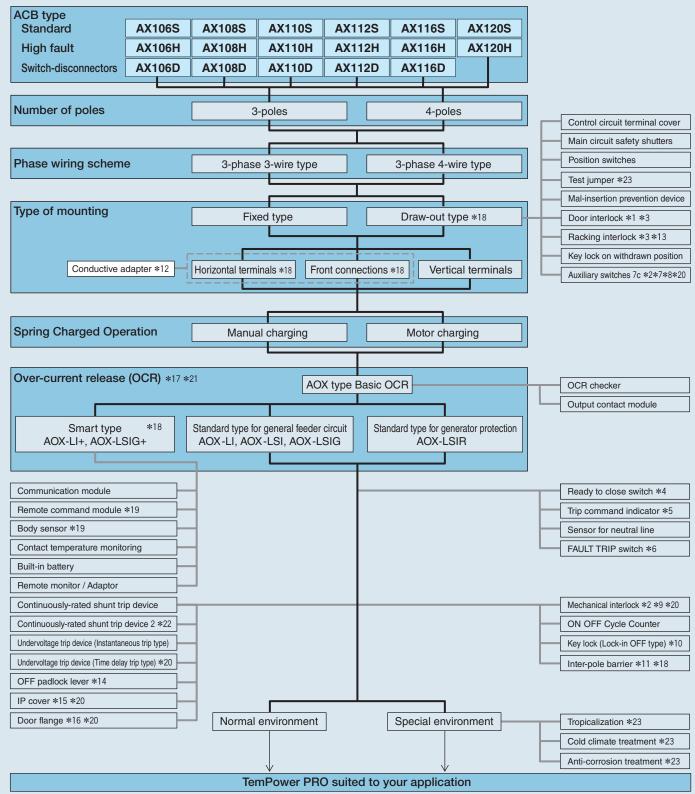
- ①: Based on IEC60947-5-1.
- ② : Applies when operation power supply is alternating current. (For details, please refer to P. 18.)
- 3 : Applies when operation power supply is direct current. (For details, please refer to P. 18.)

Position padlock lever

Using the position padlock lever prevents the breaker body from inadvertently being drawn out. The release button in the pulledout position locks the breaker body in the CONNECTED, TEST, or ISOLATED position.
Use padlocks with a Ø6 hasp. Up to three padlocks (with Ø6 hasp) can be installed.

Auxiliary switches 4c

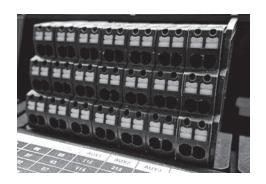
Auxiliary switches indicates the "ON" and "OFF" status of ACB electrically. The auxiliary switches for draw-out type ACBs operate in the "CONNECTED" position and "TEST" position.


- * This accessory can not be used with Auxiliary switches 7c.
- * The connection of Auxiliary switch 4c is disconnected in the process that the breaker body is withdrawn from "TEST" position to "ISOLATED" position.

Ratings of auxiliary switch 4c

	Groups	Volt	age (V)	Current (A)	Min. applicable load
			100-380	6.0	
		AC	381 – 480	6.0	
			481 - 690	6.0	24V
	Standard		24	2.5	100mA
		DC	48	2.5] TOOTIA
		DC	125	0.5	
Utilization category			250	0.3	
AC-12/DC-12 ①		AC	100-380	5.0	
			381 - 480	5.0	
			481-690	5.0	15V
	For microload		24	5.0	2mA
		DC	48	2.5	ZIIIA
			125	0.5	
			250	0.3	

- 1 : Based on IEC60947-5-1.
- 2: Chattering due to ON-OFF operation of the ACB lasts for less than 30 ms. (There is some fluctuation depend on the ON-OFF cycles of ACB) Take note when applying to circuits.
- ③: Do not connect an auxiliary switch to the Latch release coil (LRC), continuously-rated shunt trip device and continuously-rated shunt trip 2 circuits. Doing so may cause failure.



- *1: Contact TERASAKI to use in combination with a door flange, IP cover, auxiliary switch 7c,
- undervoltage trip device (Time delay trip type), or mechanical interlock *2: Contact TERASAKI to use in combination with a racking interlock
- *3: When using a door interlock, a racking interlock is available as standard.
 *4: Cannot be fitted with Trip command indicator or FAULT TRIP switch2.
 *5: Cannot be fitted with Ready to close switch or FAULT TRIP switch2.
- *6: Two switches can be mounted (FAULT TRIP switch, FAULT TRIP switch). FAULT TRIP switch2 cannot be fitted with Ready to close switch or Trip command indicator.
- *7: Cannot be fitted with mechanical interlock or auxiliary switch 4c.
- *8: Tripping mechanism differs from auxiliary switch 4c. For details, please refer to P.49.
- *9: Cannot be fitted with auxiliary switch 7c.
- *10 : Cannot be fitted with OFF padlock.
- *11 : Cannot be fitted with Draw-out type front connection specifications or conductive
- *12 : Cannot be fitted with Inter-pole barrier.
- *13 : Contact TERASAKI to use in combination with a mechanical interlock or auxiliary switch 7c.
- *14 : Cannot be fitted with Key lock (Lock in OFF).
- *15 : Cannot be fitted with door flange.
- *16: Cannot be fitted IP cover
- *17: For over-current release (OCR) specifications, please refer to P.22 to P.46.
- *18 : Cannot be used for AX120S and AX120H.
- *19: To use these specifications, always also use a communication module.
- *20 : Contact TERASAKI to use in combination with a door interlock. *21 : Cannot be used for switch disconnectors.
- *22 : Can not be fitted with Undervoltage trip devices *23 : Coming soon.

Control circuit terminals

Quick connection terminals have been used. Cable connection work is simple, with a small flathead screwdriver, the only tool that is required.

Accessories for Draw-out Type

Main circuit safety shutters

The main circuit safety shutters automatically conceal the main circuit contacts on the draw-out cradle when the ACB is drawn out.

- The line side and load side shutters operate independently, and can be separately padlocked in the closed position for safety.
- Each line side and load side can be locked with up to three padlocks (with ø6 hasp).

Mal-insertion prevention device

Interchangeability exists within the TemPower PRO series of ACBs. This is the device to avoid that a different specification of ACB is placed into the Drawout cradle. This device is capable of distinguishing ten different breaker bodies.

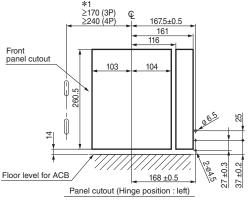
Test jumper

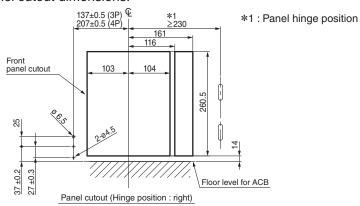
Used to conduct an electrical switching test with the ACB outside of the draw-out cradle.

The jumper is connected with a connector of standard length 5 m.

Key lock on withdrawn position

Locking device that prevents ACBs from inadvertently being drawn out. Allows units to be locked in the CONNECTED, TEST or ISOLATED positions. Up to two keys can be installed, and can be selected from five types: Cylinder, Ronis, Proflux, Kirk, or KLS.

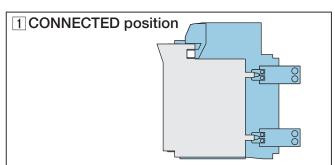

Body sensor

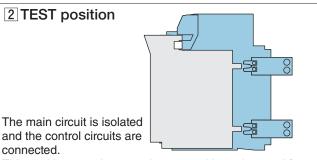

Outputs the ACB's withdrawn position (TEST, CONNECTED) to Over-Current Release (OCR). Using this together with a communication module allows the withdrawn position of the ACB to be checked remotely. *Cannot be used for modules mounted with standard

 Cannot be used for modules mounted with standard type over-current releases.

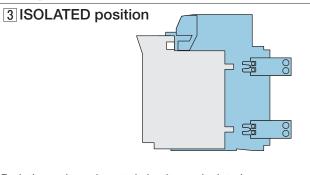
Door interlock

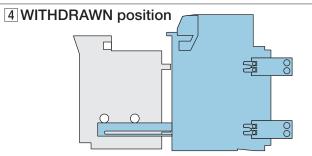
The door interlock prevents the switchboard door from being opened unless the breaker body is in the ISOLATED position. To use this, install it with the following panel cutout dimensions.


- *1: When using a door interlock, a racking interlock is available as standard.
- *2: Specify the hinge position of distribution board door (right side or left side) when placing an order.
- *3: Contact TERASAKI to use in combination with a door flange, IP cover, auxiliary switch 7c, undervoltage trip device (Time delay trip type), or mechanical interlock.


2 Types of Mounting

Draw-out type


Maintenance and inspection are easy. Consists of a breaker body and a draw-out cradle, where the drawout cradle is fixed in the switchboard and only the breaker body can be drawn out or removed. There are four breaker body positions: CONNECTED, TEST, ISOLATED, and WITHDRAWN.


Both the main and control circuits are connected for normal service.

This position permits operation tests without the need for opening the switchboard panel door.

Both the main and control circuits are isolated.

The breaker body is fully withdrawn from the draw-out cradle.

Fixed type

This type of ACB has no draw-out cradle and is designed to be directly mounted in the switchboard.

Terminal arrangements

■Main circuit terminals

The design of boards is simple.

Three types of connection methods are available (vertical terminals, horizontal terminals, and front connections). The vertical terminals and horizontal terminals can be changed from vertical to horizontal and from horizontal to vertical, by simply removing two bolts. Different types of terminal arrangements can be specified for the line and load sides. (AX120S and AX120H only have vertical terminals).

Vertical terminals

Horizontal terminals

Front connections

Position switches

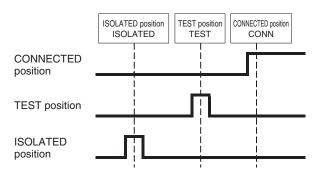
The position switch operates to give an indication of the breaker position: CONNECTED, TEST, ISOLATED. Switches are available in contact arrangements from 1c to 5c.

Select the type from the following table when ordering.

Standard

Tuno	Number of	Cont	act arrange	ment
Type	contacts	ISOLATED	TEST	CONN
ALX-212PB	5c	2	1	2
ALX-211PB	4c	2	1	1
ALX-210PB	3c	2	1	0
ALX-202PB	4c	2	0	2
ALX-201PB	3c	2	0	1
ALX-200PB	2c	2	0	0
ALX-112PB	4c	1	1	2
ALX-111PB	3c	1	1	1
ALX-110PB	2c	1	1	0
ALX-102PB	3c	1	0	2
ALX-101PB	2c	1	0	1
ALX-100PB	1c	1	0	0
ALX-012PB	3c	0	1	2
ALX-011PB	2c	0	1	1
ALX-010PB	1c	0	1	0
ALX-002PB	2c	0	0	2
ALX-001PB	1c	0	0	1

For microload


Timo	Number of	Cont	ment	
Type	contacts	ISOLATED	TEST	CONN
ALX-212PA	5c	2	1	2
ALX-211PA	4c	2	1	1
ALX-210PA	3c	2	1	0
ALX-202PA	4c	2	0	2
ALX-201PA	3c	2	0	1
ALX-200PA	2c	2	0	0
ALX-112PA	4c	1	1	2
ALX-111PA	3c	1	1	1
ALX-110PA	2c	1	1	0
ALX-102PA	3c	1	0	2
ALX-101PA	2c	1	0	1
ALX-100PA	1c	1	0	0
ALX-012PA	3c	0	1	2
ALX-011PA	2c	0	1	1
ALX-010PA	1c	0	1	0
ALX-002PA	2c	0	0	2
ALX-001PA	1c	0	0	1

Ratings of Position switch

	Groups	Volt	age (V)	Current (A)	Minimum applicable load
			100-380	8.0	
		AC	381-480	8.0	
			481-690	6.0	24)/
	Standard		24	2.5	24V 100mA
		DC	48	2.5	TOOTHA
		DC	125	0.8	
Utilization category			250	0.3	
AC-12/DC-12 ①		AC	100-380	5.0	
			381 - 480	5.0	
			481-690	5.0	15)/
	For microload		24	5.0	15V 2mA
		DC	48	5.0	ZIIIA
		DC	125	0.8	_
			250	0.3	

①: Based on IEC60947-5-1.

Position switch operation sequence

Status of contact				
a-contact	b-contact			
ON	OFF			
OFF	ON			
ON	OFF			
OFF	ON			
ON	OFF			
OFF	ON			

Spring Charged Operation

Manual charging type

For this type of ACB, the closing springs are charged by means of the spring charging handle. ON/OFF operation of the ACB is performed by means of ON/OFF buttons on the ACB.

Charging the closing springs

Pumping the spring charging handle by hand to charges the closing springs.

■ Closing the ACB

Pressing the ON button on the front of ACB to close the ACB.

Opening the ACB

Pressing the OFF button on the front of ACB to open the ACB.

The ACB cannot be closed as long as the OFF button is pressed.

Motor charging type

For this type of ACB, the closing springs are charged automatically by means of a motor. ON/OFF operation of the ACB can be performed remotely.

■ Charging the closing springs

A motor is used to charge the closing springs automatically.

When the closing springs are released to close the ACB, they are automatically charged again by the motor for the next ON operation.

■ Closing the ACB

Closing the "remote" ON switch activates the Latch Release Coil (LRC). (For details please refer to P. 18)

Opening the ACB

For opening the ACB remotely, specify the continuously-rated shunt trip device.

(For details please refer to P.20)

■ Operation power supply

Detect voltage (V)	Applicable voltage range for	Ratings of operation power supply ①		
Rated voltage (V)	ON/CHARGE operation (V)	Motor inrush current (peak) (A)	Motor steady-state current (A)	
AC 24	20.4 - 26.4	27.9	7.7	
AC 48	40.8 - 52.8	22.4	3.5	
AC 100 - 130	85 – 143	10.6	1.6	
AC 200 - 250	170 – 275	5.6	0.7	
AC 380 - 400	323 - 440	3.0	0.4	
AC 415 - 450	352.8 - 495	2.5	0.4	
DC 24	18 - 26.4	21.3	6.4	
DC 48	36 - 52.8	17.6	3.6	
DC 100 - 130	75 – 143	8.1	1.4	
DC 200 - 250	150 – 275	4.5	0.7	

① : May vary slightly depending on control voltage or other conditions.

■ Ratings of Latch Release Coil (LRC)

	Applicable	Coil Excitation Current ①		Power Cor	nsumption (VA) ①	Max. Closing time ①,③ (ms)		
Rated voltage (V)	ated voltage (V) operational voltage (V)		Holding current (mA)	Steady-state	Closing command ②			
AC/DC 24 - 30	AC 20.4 - 33	10	10 150					
AC/DC 24 - 30	DC 18 - 33	12 150						
AC/DC 48 - 60	AC 40.8 - 66	6	80					
AC/DC 46 - 60	DC 26 - 66	66						
AC/DC 100 - 130	AC 85 - 143	4	40	5 or less	200 or less	80		
AC/DC 100 - 130	DC 75 – 143	4	40					
AC/DC 200 - 250	AC 170 - 275	2	2 20	00	20			
AC/DC 200 - 250	DC 150 - 275	2	2 20					
AC 380 - 480	AC 323 - 528	1	10					

 $[\]ensuremath{\textcircled{1}}$: May vary slightly depending on control voltage or other conditions.

②: RMS during 200ms from the moment of excitation.

③: There is some variation in the closing time depend on the connection method. For the details, please refer to P.70 to P.75.

4 Accessories for Spring Charged Operation

Ready to close switch

Switch that provides an electrical indication that the ACB is in a ready to close status.

This switch is activated when the following conditions are met.

- ON/OFF indicator is showing OFF. (ACB is in OFF status)
- Closing spring charge indicator is showing "CHARGED ON OK".
- Undervoltage trip device is energised.
- Continuously-rated shunt trip device is not energised.
- Circuit breaker is in the CONNECTED position or the TEST position.
- Reset setting dial is in "AUTO" or Reset setting dial is in "MANUAL" with pussing the Reset button continuously.
- The key lock and key padlock are unlocked.
- The mechanical interlock is unlocked.
- While the OFF button is not pushed.

Ratings of ready to close switch

	Groups	Voltage (V)		Current (A)	Minimum applicable load			
Utilization category AC-12/DC-12 ①	Standard				40	100-380	5.0	
		AC	381 – 480	5.0				
		Ctandard	Ctandard		24	5.0	15V	
		DC	48	2.5	2mA			
		DC	125	0.4				
			240	0.2	1			

①: Based on IEC60947-5-1.

②: Chattering time by the operation of ACB is 30ms or less.

5 Trip Devices

Continuously-rated shunt trip device

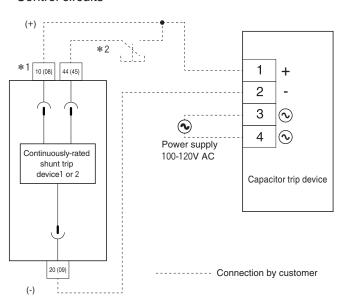
Continuously-rated shunt trip device can remote controll to operate the ACB to "OFF" electrically.

The continuous-rated shunt trip device allows the ACB to be turned OFF when an external protection relay against overcurrent or reverse power is activated.

Because of its continuous rating, it can also be used as an electrical interlock for the ACB.

* Two shunt trip device can be installed to ensure the tripping operation. In the unlikely event that one of the shunt trip devices fails to operate due to the disconnection of wire or other cause, the other shunt trip device can be used for reliable trip operation. (In this case, Undervoltage trip can not be fitted.)

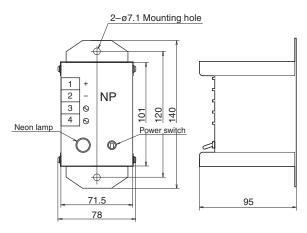
Ratings of Continuously-rated shunt trip device


Rated voltage (V) Operational voltage (V)		Coil Excitation	on Current ①	Power Cor	Opening time	
		Inrush current (A)	Holding current (mA)	Steady-state	Trip command ②	①, ③ (ms)
AC/DC 24 - 30	16.8 – 33	12	150			
AC/DC 48 - 60	33.6 – 66	6	80			
AC/DC 100 - 130	70 – 143	4	40	5 or less	200 or less	50
AC/DC 200 - 250	140 – 275	2	20			
AC 380 – 480	266 – 528	1	10			

- ① : May vary slightly depending on control voltage or other conditions.
- 2 : RMS during 200ms from the moment of excitation.
- ③: There is some variation in the opening time depend on the connection method. For the details, please refer to P.70 to P.75.

Capacitor trip device (Separate)

When used together with a continuously-rated shunt trip device, capacitor trip devices can be used to trip ACBs for up to 30 seconds even if there is a large voltage drop caused by a power failure (AC), short-circuit or other faults.


- * Testing the device is not possible when a test jumper is used.
- Control circuits

Types	AQR-1
Rated voltage	100-120V AC
Operational voltage	70-110% of rated voltage
Rated frequency	50/60Hz
Rated voltage of Shunt Trip used	100-130V AC/DC
Power consumption (Trip command) 2	200VA ①
Power consumption (Steady-state) ②	5VA

- ① : RMS during 200ms from the moment of excitation.
- ② : There is some variation due to the fluctuations in operational voltage.

• Outline Dimensions

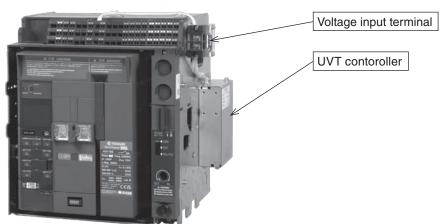
- *1: The terminal number in brackets indicates the terminal number for continuously-rated shunt trip device2.
- *2: Please refer to P.70 to P.75 for precautions on the cables connecting the switch with terminal 🔞 and terminal 🔟.

Undervoltage trip device

The undervoltage trip device (UVT) trips the ACB when the control voltage drops below the opening voltage. When the control voltage is restored to the pick-up voltage, the ACB can be closed. The pick-up voltage is fixed to 85% of the minimum rated voltage.

The undervoltage trip device (UVT) is available in two types. The instantaneous type trips the ACB instantly when the control voltage drops below the opening voltage. The delay type (coming soon) does not trip the ACB instantly, but trips the ACB when the control voltage remains below the opening voltage for a certain period of time. The delay type has the undervoltage trip device controller (UVT controller) and the relay terminal mounted on the side of the circuit breaker. (For the details, please refer to the outline dimensions.)

Ratings of Undervoltage trip device (Instantaneous trip type)


Dated valtage	Opening	Pick-up	Coil Excitation	on Current ①	Power Consur	mption (VA) ①	Operating time
Rated voltage (V)	Voltage (V)	Voltage (V)	Inrush current (A)	Holding current (mA)	Steady-state	Reset	Operating time (ms)
AC/DC 24 - 30	10.5 – 16.8	20.4	12	150	5 or less		
AC/DC 48 - 60	21 – 33.6	40.8	8	80	5 or less		
AC/DC 100 - 130	45.5 – 70	85	4	40	5 or less	200 or less ②	200 or less
AC/DC 200 - 250	87.5 – 140	170	3	20	5 or less		
AC 380 – 480	168 – 266	323	1	10	6 or less		

- ① : May vary slightly depending on control voltage or other conditions.
- ②: RMS during 200ms from the moment of excitation.

Ratings of Undervoltage trip device (Time delay trip type)

Dated voltage	Opening	Pick-up	Coil Excitation	on Current ①	Power Consu	mption (VA) ①	Operating time
Rated voltage (V)	Voltage (V)	Voltage (V)	Inrush current (A)	Holding current (mA)	Steady-state	Reset	Operating time (ms)
AC/DC 48 - 60	21 - 33.6	40.8	8	120			
AC/DC 100 - 130	45.5 - 70	85	4	100	10	200 er lees ②	F00 or
AC/DC 200 - 250	87.5 – 140	170	3	35	10 or less	200 or less ②	500 or more
AC 380 - 480	168 – 266	323	1	15			

- ① : May vary slightly depending on control voltage or other conditions.
- ②: RMS during 200ms from the moment of excitation.
- ③ : The UVT controller is mounted on the right side when viewing from the front of the ACB. For details about outline dimensions, please refer to P.56 to P.69.
- ④: If using this device, set the short time-delay trip time of the over-current release (OCR) to the following values or less. Contact TERASAKI if a short time-delay trip time setting that exceeds the values below is required. General protection specifications: 400ms Generator protection and Smart type OCR: 500ms
- ⑤: Contact TERASAKI to use in combination with a door interlock.

Undervoltage trip device (Time delay trip type)

6 Over-current Releases (OCR)

TemPower PRO can be equipped with the high-reliability, high-functionality AOX-type over-current releases (OCRs). OCR has 2 types, Standard type and Smart type. There are some type names as follows depend on the combination of protection characteristics they have.

		Over-current release (OCR) types											
	For g	eneral feeder (circuit	For generator protection									
Standard type	AOX-LI	AOX-LSI	AOX-LSIG	AOX-LSIR									
Smart type	_	AOX-LSI+	AOX-LSIG+	_									

Features

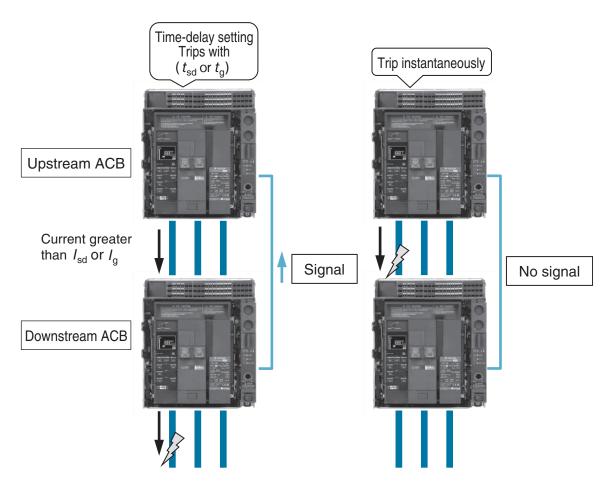
	Standard type	Smart type					
Appearance	AOX-LSIR AOX-LSIR FINATE PROPERTY OF THE PRO	1320A 13					
Set up method for protection function	Set by dial operation	Set by push button operation					
Measurement function of circuit information	Non	Yes					
Liquid color display	Available	Available					
Indication items on display	1. Stand-by mode Pick-up current is indecated on the display when the pick-up occurs by Long time-delay trip and Preferential trip alarm function. 2. Information display mode Protection setting values for several protections are linked to the dial. 3. Trip display mode If the ACB trips when being activated by various protective functions, the display automatically changes to the Trip display mode, and the following details flash in red according to the protective function that was activated. • Activated protective function • Tripped phase • Value causing trip	1. Stand-by mode Display the current status of ACB and indicates on the screen when the trip or alarm has occurred. 2. Over-view mode Indicate all protection setting according to the specification and only measurement items those are selected. It is possible to set the scroll indication on the Stand-by mode. 3. Menu mode Indicate the menu of several information indicate mode. 4. Information indicate mode Indicate the several protection setting, measurement value, display setting and history. 5. Event display mode Indicate the event information of TRIP and ALARM.					

Over Current Release (OCR) functional specifications

OCR types (AOX-)				Standa	rd type		Smar	t type
OCH types (AOX-)			LI	LSI	LSIG	LSIR 12	LSI+	LSIG+
	AX106S~ AX116S	Draw-out type	0	0	0	0	0	0
	AX1005~ AX1105	Fixed type	0	0	0	0	\bigcirc \bigcirc	017
Available ACBs	AX106H~ AX116H	Draw-out type		0	\circ	\circ	\circ	0
	AXIOOIT AXIIOIT	Fixed type		0	0	0	\bigcirc 17	$\bigcirc \bigcirc$
	AX120S, AX120H	Fixed type	0	0	0	_	_	_
	Long time delay trip	(LT) 24		•	•	•	•	•
	Short time delay trip	(ST) 24	_	•	•			
	Making current relea	ase (MCR) ⑤						
	Instantaneous overr	ide trip (IO) ⑥						
	N-phase protection	(NP) 247				_		
	Ground fault trip (GF	7) 24	_	_		_	_	
Protection functions ①	Reverse power trip ((RPT) 484	_	_	_			
Flotection functions	Under voltage prote	ction (UV) 39	_	_	_	_		
	Over voltage protect	tion (OV) 39	_	_	_	_		
	Unbalance voltage pr	rotection (UNBV) 39	_	_	_	_		
	Unbalance current pr	otection (UNBC) 39	_	_	_	_		
	Under frequency pro	otection (UF) 9	_	_	_	_		
	Over frequency prot	ection (OF) 9	_	_	_	_		
	Contact temperature	e monitoring (OH) 9	_	_	_	_	0	0
	Dual setting (3)		_	_	_	_	•	•
Zone interlock (5)	Short time-delay trip)	_	•				
Zone interiock (3)	Ground fault trip		_	_	•	_	_	
	Preferential trip alar	m (PTA)		•			_	_
Alarm function	Preferential trip alar	m 1 (PTA1)	_	_	_	_	•	
Alamitancion	Preferential trip alar	m 2 (PTA2)	_	_	_	_		
	Custom alarm		_	_	_	_		
Switching of starting characteristic ①⑥	COLD/HOT (Long ti	me delay trip, PTA)	•	•	•	•	•	•
Monitoring 10			_	_		_	•	•
Control power (24V DC)			Required	Required	Required	Required	Required	Required
Contact module 9			0	0	0	0	0	0
Communication 9			_	_	_	_	0	0
Remote command module							0	0

- : Available as standard : Optional
- : "no" or "not available"
- ①: This protective function will be activated if current equal to or greater than 120 A (RMS value) flows through any pole in the main circuit, or current equal to or greater than 80 A flows through the RST phase, when no control power is supplied.
- 2 : This function employs a calculation method based on RMS current. Current settings are also expressed as RMS values.
- ③ : This function employs a calculation method based on RMS voltage. Voltage settings are also expressed as RMS values.
- ④ : Either of the following operation modes can be set: Circuit breaker tripping and activation display are performed, or the function is off (circuit breaker tripping and activation display are not performed).
- ⑤: Protective function that trips the ACB if there is a current greater than the pick-up current when the ACB is closed. This function is enabled for 30 msec immediately after the ACB is closed, and the pick-up current is 36 kA (peak value).
- ⑥: This protection function is activated with a higher level of pririoty than an instantaneous trip (INST), and trips the ACB at the set value. The pick-up current is 81.3 kA (peak value) for the standard type, and 89.4 kA (peak value) for the smart type.
- ①: This function protects the neutral wire of the three-phase four-wire system circuit from overcurrent.

- 8: The RPT function protects 3-phase generators running in parallel against reverse power.
- (9): This function requires control power supply. It does not work when control power is lost.
- 10 : This function does not work if control power is lost, and there is not more than 80 A or more current available in the RST phase.
- 1 : LSIR is fixed at COLD.
- ②: Not applicable to 4-pole circuit breakers.
- ③: This function allows the setting values for the following protection functions to be stored in two types of setting value groups, "Setting A" and "Setting B.
 - · Long time-delay trip (LT) · Short time-delay trip (ST)
 - · Instantaneous trip (INST)
 - · Ground fault trip (GF...for LSIG+)
 - * Cannot be used for zone interlock.
- (1): For smart types, control power supply is required. They does not work when control power is lost.
- For standard types, specify whether or not zone interlocks are required when placing an order.
- (6): For standard types, specify this function when placing an order.
- ①: Contact temperature monitoring can not be used for the fixed type.


Zone interlock

The zone interlock function can be enabled for the corresponding function when the Over-Current Release (OCR) is compatible with short time-delay trips or ground fault trips.

If the zone interlock is enabled, a signal is output to upstream ACB if a downstream ACB detects a current greater than the pick-up current (I_{sd} or I_{g}).

When the upstream ACB detects a current greater than the pick-up current (I_{sd} or I_g), the signal from the downstream ACB is verified and if the upstream ACB receives the signal, it trips with the set tsd or tg time limit. If no signal is received, it trips with the same time limit as an instantaneous trip.

This function is not only used for linking TemPower PROs together, but can also be used for linking TemPower PROs and TemBreak PRO Smart circuit breakers, or TemPower PROs and TemPower2 air circuit breakers.

Zone interlock operating schematic

Setting range of protection functions (Standard type)

AOX-LI 6

Types of ACB	AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H	AX120S, AX120H					
Long time delay pick-up current (A) : (I _r)	$(I_r1): 0.40 - \underline{1.00}$ (in units of 0.10), 0.95 or OFF ③ $(I_r2): 0.91 - \underline{1.00}$ (in units of 0.01)	$(I_r 1): 0.40 - \underline{1.00}$ (in units of 0.10), 0.95 or OFF $\textcircled{3}$ $(I_r 2): 0.91 - \underline{1.00}$ (in units of 0.01)					
	$(I_r) = (I_r 1) \times (I_r 2) \times (I_n)$	$(I_r) = (I_r 1) \times (I_r 2) \times (I_n)$					
	Non tripping when load current $\leq ([I_r] \times 1.05]$, Tripping when $([I_r] \times 1.05) < \text{load current} \leq ([I_r] \times 1.2)$ Tolerance : $105\% - 120\%$	Non tripping when load current $\leq ([I_r] \times 1.05]$, Tripping when $([I_r] \times 1.05) < \text{load current} \leq ([I_r] \times 1.2)$ Tolerance : 105% – 120%					
Long time delay time	0.5, 1.25, 2.5, 5, 8, <u>10</u> , 15, 20, 25, 30 ②	0.5, 1.25, 2.5, 5, 8, <u>10</u> , 15, 20 ②					
settings (s): (t _r)	Tolerance: $-20\% \times t_r - 20\text{ms} - +0\% \times t_r + 30\text{ms}$	Tolerance : $-20\% \times t_r - 20\text{ms} - +0\% \times t_r + 30\text{ms}$					
Instantaneous trip	$(I_n) \times (1.5, 2, 4, 6, 8, 10, 12, 14, 16)$ or OFF	$(I_n) \times (1.5, 2, 4, 6, 8, 10, 12)$ or OFF					
pick-up current (A) : (I _i) ①	Tolerance: ±15%	Tolerance: ±15%					
Neutral protection pick-up current (A) : (I_N) \bigcirc	$(I_r) \times (50, \underline{100}, 200)\%$ or OFF ⑤	$(I_r) \times (50, \underline{100}, 200)\%$ or OFF ⑤					
Neutral protection time settings (s) : (t_N)	Linked to the time settings for long time delay trip or instantaneous trip.	Linked to the time settings for long time delay trip or instantaneous trip.					
Preferential trip alarm pick-up current (A) : (I _P)	$(I_r) \times 80\%$ (fixed) $\textcircled{3}$ Tolerance: $\pm 10\%$	$(I_r) \times 80\%$ (fixed) $\center{3}$ Tolerance: $\pm 10\%$					
Preferential trip alarm time settings (s) : (t_P)	$(t_{\rm f}) \times 50\%$ (fixed) ④ Tolerance差: $-20\% \times t_{\rm P} - 20$ ms $-+0\% \times t_{\rm P} + 30$ ms	$(t_{\rm f}) \times 50\%$ (fixed) $\textcircled{4}$ Tolerance : $-20\% \times t_{\rm P} - 20 {\rm ms} - +0\% \times t_{\rm P} + 30 {\rm ms}$					
Switching of starting	HOT/COLD	HOT/COLD					

- ① : If the instantaneous trip current is set to OFF, this will be activated with the maximum set value $[(l_n \times 16)]$
- ②: Time delay at $(I_r) \times 600\%$

characteristic

- ③ : When the (I_r1) =OFF, Preferential trip alarm can not work.
- 4: Time delay at $(I_p) \times 600\%$
- 5: When the neutral protection pick-up current (I_N) exceeds the rated current (I_n) , setting value of (I_N) set to rated current.
- 6: In case of AX106S or AX106H, please select the value of rated current (I_n) 400A or 630A.
- ①: If the 3-phase 3-wire configuration is selected, default setting value is set to "OFF".
- (8): If not otherwise specified, the product will be delivered with the underlined default setting value.

Setting range of protection functions (Standard type)

AOX-LSI 6

Types of ACB	AX106S, AX		,					AX120S, AX	<120H	1					
Long time delay pick-up current (A) : (I _r)	(<i>I</i> _r 1) : 0.40 – (<i>I</i> _r 2) : 0.91 –						95 or OFF ③	(I _r 1): 0.40 – (I _r 2): 0.91 –						95 or OFF ③	
	$(I_r)=(I_r1)\times (I_r1)$	/ _r 2)×	(I _n)					$(I_r) = (I_r 1) \times (I_r 2) \times (I_n)$							
	Non trippin Tripping wh Tolerance :	en ([/	r]×1.	05)<			$] \times 1.05],$ nt $\leq ([I_r] \times 1.2)$	Non tripping when load current $\leq ([I_r] \times 1.05]$, Tripping when $([I_r] \times 1.05) < \text{load current} \leq ([I_r] \times 1.2)$ Tolerance : $105\% - 120\%$							
Long time delay time	0.5, 1.25, 2.	5, 5,	8, <u>10</u> ,	15, 2	20, 25	, 30 🛭	2)	0.5, 1.25, 2.5, 5, 8, <u>10</u> , 15, 20 ②							
settings (s): (t _r)	Tolerance :	-20%	$6 \times t_{\rm r}$	–20m	s — +	-0%×	t _r +30ms	Tolerance :	-20%	$6 \times t_{\rm r}$	–20m	s — +	0%×	t _r +30ms	
Short time delay pick-up	$(I_{\rm n}) \times (1, 1.5)$	5, 2, 2	.5, 3,	4, <u>6</u> ,	8, 10) or C)FF	$(I_{\rm n}) \times (1, 1.5)$, 2, 2	.5, 3,	4, <u>6</u> ,	8) or	OFF		
current (A) : (I _{sd})	Tolerance :	±10	%					Tolerance :	±10	%					
Short time delay time	Relay time	50	100	200	<u>400</u>	600	(Adjustable)	Relay time	50	100	200	<u>400</u>	600	(Adjustable)	
settings (ms) : (t_{sd})	Resettable time	25	75	175	375	575	Ramp chracteristic	Resettable time	25	75	175	375	575	Ramp chracteristic	
	Total breaking time	100	150	250	450	650	I ⁴ t : ON or <u>OFF</u>	Total breaking time	100	150	250	450	650	I ² t : ON or <u>OFF</u>	
Instantaneous trip pick-	$(I_{\rm n}) \times (1.5, 2)$	2, 4, 6	, 8, 1	0, 12,	14, 1	<u>6</u>) or	OFF	(I _n)×(1.5, 2, 4, 6, 8, 10, <u>12</u>) or OFF							
up current (A) : (I _i) ①	Tolerance :	±15	%					Tolerance : ±15%							
Neutral protection pick- up current (A) : (I _N) ⑦	(/ _r)×(50, <u>10</u> Non trippin Tripping who	g whe	en loa	ad cu	rrent		_N]×1.05], nt≦([/ _N]×1.2)	$(I_r) \times (50, \underline{100}, 200)\%$ or OFF $\textcircled{5}$ Non tripping when load current $\leq ([I_N] \times 1.05]$, Tripping when $([I_N] \times 1.05) < \text{load current} \leq ([I_N] \times 1.2)$							
Neutral protection time settings (s) : (<i>t</i> _N)	Linked to the or instantar			-	for lo	ong tii	me delay trip	Linked to the or instantar			-	for Ic	ng ti	me delay trip	
Preferential trip alarm pick-up current (A) : (I _p)	$(I_r) \times 80\%$ (I Tolerance :							(I _r)×80% (Fixed) ③ Tolerance: ±10%							
Preferential trip alarm time settings (s) : (t_p)	$(t_r) \times 50\%$ (I Tolerance:		,	–20m	ns — ·	+0%>	< <i>t</i> _P +30ms	$(t_{\rm r}) \times 50\%$ (Folerance:		,	–20m	ıs — -	+0%>	≺ <i>t</i> _P +30ms	
Switching of starting characteristic	HOT/COLD)						HOT/COLD)						

- ①: If the short time delay pick-up current and instantaneous trip current are set to OFF, instantaneous trip will be activated with the maximum set value $[(I_n \times 16)]$
- ②: Time delay at $(I_r) \times 600\%$
- ③ : When the (I_r1) =OFF, Preferential trip alarm can not work.
- 4: Time delay at $(I_p) \times 600\%$
- \bigcirc : When the neutral protection pick-up current (I_N) exceeds the rated current (I_n) , setting value of (I_N) set to rated current.
- 6: In case of AX106S or AX106H, please select the value of rated current (I_n) 400A or 630A.
- ②: If the 3-phase 3-wire configuration is selected, default setting value is set to "OFF".
- ®: If not otherwise specified, the product will be delivered with the underlined default setting value.

Setting range of protection functions (Standard type)

AOX-LSIG 6

Types of ACB	AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H
Long time delay pick-up current (A) : (I _r)	$(I_r1): 0.40 - \underline{1.00}$ (in units of 0.10), 0.95 or OFF ③ $(I_r1): 0.40 - \underline{1.00}$ (in units of 0.10), 0.95 or OFF ③ $(I_r2): 0.91 - \underline{1.00}$ (in units of 0.01)
	$(I_r) = (I_r 1) \times (I_r 2) \times (I_n)$ $(I_r) = (I_r 1) \times (I_r 2) \times (I_n)$
	Non tripping when load current $\leq ([I_r] \times 1.05]$, Tripping when $([I_r] \times 1.05) < \text{load current} \leq ([I_r] \times 1.2)$ Tolerance : $105\% - 120\%$ Non tripping when load current $\leq ([I_r] \times 1.05]$, Tripping when $([I_r] \times 1.05) < \text{load current} \leq ([I_r] \times 1.2)$ Tolerance : $105\% - 120\%$
Long time delay time	0.5, 1.25, 2.5, 5, 8, <u>10</u> , 15, 20, 25, 30 ②
settings (s): (t _r)	Tolerance: $-20\% \times t_r$ $-20ms$ $-40\% \times t_r$ $+30ms$ Tolerance: $-20\% \times t_r$ $-20ms$ $-40\% \times t_r$ $+30ms$
Short time delay pick-up	$(I_n) \times (1, 1.5, 2, 2.5, 3, 4, \underline{6}, 8, 10)$ or OFF $(I_n) \times (1, 1.5, 2, 2.5, 3, 4, \underline{6}, 8)$ or OFF
current (A) : (I _{sd})	Tolerance : ±10% Tolerance : ±10%
Short time delay time	Relay time 50 100 200 400 600 (Adjustable) Relay time 50 100 200 400 600 (Adjustable)
settings (ms) : (t_{sd})	Resettable time 25 75 175 375 575 Ramp chracteristic Resettable time 25 75 175 375 575 Ramp chracteristic
	Total breaking 100 150 250 450 650 140 140 140 150 150 250 1450 140 150 150 150 150 140 150
Instantaneous trip pick-	$(I_n) \times (1.5, 2, 4, 6, 8, 10, 12, 14, \underline{16})$ or OFF $(I_n) \times (1.5, 2, 4, 6, 8, 10, \underline{12})$ or OFF
up current (A) : (I _i) ①	Tolerance: $\pm 15\%$ Tolerance: $\pm 15\%$
Neutral protection pick- up current (A) : (I _N) ⑦	$(I_r) \times (50, \frac{100}{100}, 200)\%$ or OFF $\textcircled{5}$ Non tripping when load current $\leqq ([I_N] \times 1.05]$, Tripping when $([I_N] \times 1.05) < \text{load current} \leqq ([I_N] \times 1.2)$ Tripping when $([I_N] \times 1.05) < \text{load current} \leqq ([I_N] \times 1.2)$
Neutral protection time settings (s) : (t_N)	Linked to the time settings for long time delay trip or instantaneous trip. Linked to the time settings for long time delay trip or instantaneous trip.
Ground fault trip pick-up current (A) : (I _g)	$(I_{\rm n}) \times 0.1 - 0.8$ (in unit of 0.1), 1.0 or OFF Default value : 0.2 Tolerance : $\pm 10\%$ $(I_{\rm n}) \times 0.1 - 0.8$ (in unit of 0.1), 1.0 or OFF Default value : 0.2 Tolerance : $\pm 10\%$
Ground fault trip time	Relay time 100 300 500 1000 2000 (Adjustable) Relay time 100 300 500 1000 2000 (Adjustable)
settings (ms) : (t _g)	Resettable time 75 275 475 975 1975 Ramp chracteristic Resettable time 75 275 475 975 1975 Ramp chracteristic
	Total breaking 150 350 550 1050 2050 141 : ON or OFF Total breaking 150 350 550 1050 2050 141 : ON or OFF
Preferential trip alarm pick-up current (A) : (I _p)	$(I_r) \times 80\%$ (Fixed) ③ $(I_r) \times 80\%$ (Fixed) ③Tolerance : $\pm 10\%$ Tolerance : $\pm 10\%$
Preferential trip alarm time settings (s) : (t_p)	$(t_{\rm f}) \times 50\%$ (Fixed) ④ $(t_{\rm f}) \times 50\%$ (Fixed) ④ Tolerance : $-20\% \times t_{\rm P} - 20{\rm ms} - +0\% \times t_{\rm P} + 30{\rm ms}$ Tolerance : $-20\% \times t_{\rm P} - 20{\rm ms} - +0\% \times t_{\rm P} + 30{\rm ms}$
Switching of starting characteristic	HOT/ <u>COLD</u>

①: If the short time delay pick-up current and instantaneous trip current are set to OFF, instantaneous trip will be activated with the maximum set value $[(I_n \times 16)]$

- ②: Time delay at $(I_r) \times 600\%$
- ③ : When the (I_r1) =OFF, Preferential trip alarm can not work.
- 4: Time delay at $(I_p) \times 600\%$
- \bigcirc : When the neutral protection pick-up current (I_N) exceeds the rated current (I_n) , setting value of (I_N) set to rated current.
- (ii): In case of AX106S or AX106H, please select the value of rated current (In) 400A or 630A.
- ①: If the 3-phase 3-wire configuration is selected, default setting value is set to "OFF".
- ®: If not otherwise specified, the product will be delivered with the underlined default setting value.

Setting range of protection functions (Standard type)

A O

Long time-delay pick-up	$(I_{\rm r}1): 0.75 -$	<u>1.15</u>	(in ur	nits of	0.05	or C	FF					
current (A) : (I_r) ①	$(I_r2): 0.91 -$	1.00	(in ur	nits of	0.01)						
	$(I_r) = (I_r 1) \times (I_r 2) \times (I_{gen})$											
	Tolerance:	±5%)									
Long time-delay time settings	15 — 60 (in u	nits (of 5s)	7	Stand	ard s	etting	j: 20				
(s): (t_r)	Tolerance: $-15\% \times t_r - 0$ ms $- +15\% \times t_r + 150$ ms											
Short time-delay pick-up	$(I_{gen}) \times (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2$	(I _{gen})×(2, 2.5, <u>2.75</u> , 3, 3.25, 3.5, 4, 4.5, 5) or OFF										
current (A) : (I _{sd}) Tolerance : ±10%												
Short time-delay time settings Relay time 100 200 300 400 500 600 700 800 900 1000 Ramp											Ramp	
$(ms):(t_{sd})$	Resettable time	75	175	275	375	475	575	675	775	875	975	characteristic I ² t :
	Total breaking time	150	250	350	450	550	650	750	850	950	1050	OFF (fixed)
Instantaneous trip pick-up	$(I_{\text{gen}}) \times 2 - \underline{1}$	<u>6</u> (in	units	of 2)	or C	FF						
current (A) : (I _i) ②	Tolerance :	±15°	%									
Preferential trip alarm pick-up	$(I_{\rm gen}) \times 60\% - 105\%$ (in units of 1%) Default setting values : $(I_{\rm gen}) \times 95\%$											
current (A) : (I _p) ③	Tolerance : ±10%											
Preferential trip alarm time	$(t_{\rm r}) \times 5\% - 80\%$ (in units of 1s), Default setting : 50% (8)											
settings (s) : (t_p) ③	Tolerance :	-15%	$\times t_{\rm p}$, – 0n	าร — -	⊦1 5%	$\times t_{p}$	+ 10	0ms			
Reverse power trip pick-up	$(P_{\rm n}) \times (\underline{4}, 4.5)$, 5, 5	.5, 6,	7, 8,	9, 10)	% 0	r OF	F				
power (kW) : (P _{rp})	Tolerance :	-20%	- +C)%								
Reverse power trip time	2.5, <u>5</u> , 7.5, 10), 12.	5, 15,	17.5,	20, 2	2.5, 2	25					
settings (s): (t _{rp})	(adjustable)	9										
	Tolerance : -	-15%	$\times t_{\rm r}$	_p – 0r	ns –	+15%	$5 \times t_{\rm l}$	_{rp} + 1	00ms	i		
Reverse power trip normal power feed direction setting	Forward dire	ection	ı/Re	verse	dire	ction	4					
Phase / wire system	3-phase 3-w	ire ty	<u>ре</u> / 3	-pha	se 4-\	vire t	уре					
Switching of starting characteristic	COLD (fixed	l)										

- ① : When $I_r 1 = OFF$, $I_r = I_{qen}$
- ②: If the set current values for both short-time delay tripping and instantaneous tripping are set to OFF, instantaneous tripping will be enabled and activated with the maximum set value (\times 16).
- ③: Specify this function when placing an order. Unless otherwise specified, the product is delivered with the default setting
- ④: "Forward direction" means the direction from the upper terminal to the lower terminal and "Reverse direction" means the direction from the lower terminal to the upper terminal.
- \odot : Specify the rated current (I_{gen}) for the generator when placing an order. The rated current (I_{gen}) can be specified between 60% and 100% of the rated current (I_n) in units of 1A.
- 6: Specify the rated power (P_n) for the generator when placing an order. The rated power (P_n) can be specified between 50kW and 9,995kW in units of 5kW.
- \bigcirc : Time limit at $(I_r) \times 120\%$
- 8: Time limit at $(I_p) \times 120\%$
- 9: Time limit at $(P_{rp}) \times 100\%$
- ①: If not otherwise specified, the product will be delivered with the underlined values and "Default setting value" in the table.

Setting range of protection functions (Smart type)

AOX-LSI+ 96

Long time-delay pick-up current	$(I_{\rm n}) \times 0.4 - 1.0$ (in units	s of 0.01)	or OF	F 2										Default settings $(I_n) \times 1.00$
$(A): (I_r) \ \textcircled{1}$	Tolerance of Thi(L ch	aracteris	stics) :	Non tr	ripping wh	nen lo	ad cu	rrent ≦	≦ ([/ _r]×	1.05),		-		_
	Tripping when $([\hat{l_r}] \times 1)$ Tolerance of other ch													
Long time-delay time settings (s) : (t_r) \bigcirc \bigcirc	0.5 – 30 (in unitss of 0							%×t _r −2	20ms –	+0%>	< t _r +301	ms		10.0s
Switching of Long time-delay trip characteristics	Thi (L characteristics)	, I ^{0.02} t (SI), It (V	I), I ² t (E	ΞI), I³t, I⁴t	(HVF)								Thi
Short time delay pick-up current (A) : (I_{sd}) ①	$(I_n) \times 1.0 - 10$ (in units	$_{\rm n}$)×1.0 – 10 (in units of 0.5) or OFF ${ m 3}$ Tolerance : $\pm 10\%$												$(I_n) \times 6$
Short time delay time settings (ms) :	Relay time	50	100	150	200 2	250	300	350	400	450	500	550	600	400ms
(t_{sd}) ①	Resettable time	25	75	125	175 2	25	275	325	375	425	475	525	575	375ms
	Total breaking time	100	150	200	250 3	800	350	400	450	500	550	600	650	450ms
	Ramp characteristic I	t : ON or	OFF											OFF
Zone interlock (Short time-delay trip)	ON or OFF													OFF
Instantaneous trip pick-up current (A) : (I_i) ①		of 0.5) o	r OFF	3	Toler	ance	: ±15	%						OFF
Neutral protection pick-up current (A) : (I_N)	$(I_{\rm r}) \times 0.5 - 2.0$ (in units	of 0.5) o	r OFF	7								,		OFF (3pole, 3phase 3wire) $(I_r) \times 1.0$ (Except for the above)
Neutral protection time settings (s) : (t_N)	Link to the time-delay	settings	for Lo	ng time	e delay tri	and	Short	time d	lelay tri	p.				—
Preferential trip alarm1 pick-up current (A): (/P1)	$(I_{\rm r}) \times 60\% - 95\%$ (in un	nits of 5%	6)		Toler	ance	: ±10	1%						(I _r)×80%
Preferential trip alarm1 time settings (s): (t_{P1}) \bigcirc	$(t_{\rm r}) \times 5\% - 80\%$ (in un	its of 5%)		Toler	ance	: -20%	%×t _{P1}	–20ms	- 0%×	×t _{P1} ;3	80ms		$(t_{\rm r}) \times 50\%$
Preferential trip alarm2 pick-up current (A): (I _{P2})	$(I_r) \times 60\% - 95\%$ (in u	f_{r})×60% – 95% (in units of 5%) or OFF Tolerance : ± 10 %									(I _r)×80%			
Preferential trip alarm2 time settings (s) : (t_{P2}) ⑤	$(t_{\rm r}) \times 5\% - 80\%$ (in un	$t_{\rm r} \times 5\% - 80\%$ (in units of 5%) Tolerance : $-20\% \times t_{\rm P2} - 20 {\rm ms} - 0\% \times t_{\rm P2}$; 30ms									$(t_{\rm r}) \times 50\%$			
Voltage settings for Under voltage	100 - 1000 (in units of				Toler	ance	: ±1%	6						100V
protection (V) : (U _{uv}) ②③	Working mode: TRIP	/ALARM	OFF											OFF
Time settings for Under voltage protection (s) : (t_{uv}) ②③	0.1 – 300 (in units of 0	.1)			Toler	ance	: ±2%	$6 \times (t_{uv})$) or ±4	l0ms, v	whiche	er is la	ger	10.0s
Voltage settings for Over voltage	100 - 1000 (in units of	5)			Toler	ance	: ±1%	6						725V
protection (V): (Uov) 1213	Working mode: TRIP	ALARM	OFF											OFF
Time settings for Over voltage protection (s) : (t_{ov}) ②③	0.1 – 300 (in units of 0	.1)			Toler	ance	: ±2%	$6 \times (t_{ov})$) or ±4	l0ms, v	vhiche	er is la	ger	10.0s
Frequency settings for Under	$45 - F_n$ (in units of 0.1				Toler	ance	: ±0.	1Hz						45Hz
frequency protection (Hz) : (F _{uf}) 12	Working mode: TRIP	/ALARM	OFF.											OFF
Time settings for Under frequency protection (s) : $(t_{\rm uf})$ ②	0.1 – 300 (in units of 0	.1)			Toler	ance	: ±2%	$6 \times (t_{uf})$	or ±4	0ms, w	hichev	er is la	ger	10.0s
Frequency settings for Over	F_n – 65 (in units of 0.1) ①			Toler	ance	: ±0.	1Hz						65Hz
frequency protection (Hz) : (F_{of}) (2)	Working mode: TRIP	/ALARM	OFF											OFF
Time settings for Over frequency protection (s) : (t_{of}) ②	0.1 – 300 (in units of 0	.1)			Toler	ance	: ±2%	$6 \times (t_{of})$	or ±4	0ms, w	hichev	er is la	ger	10.0s
Power settings for Reverse power	$(P_{\rm n}) \times 4\% - 15\%$ (in u	nits of 0.	5%)		Toler	ance	: -20%	%~ +0°	%					4%
protection (kW) : (P _{rp}) 6 ¹	Working mode : TRIP	/ALARM	OFF											OFF
Time settings for Reverse power protection (s) : (t_{rp}) \mathbb{O}	0.5 – 25 (in units of 0.5	5)			Toler	ance	: –15%	$6 \times (t_{\rm rp})$	-0ms -	- +15%	$\times (t_{\rm rp})$	+100ms		5s
Current settings for Unbalance current	2 – 90 (in units of 1)				Toler	ance	: ±5%	6						50%
protection (%): (I _{unbc}) ②	Working mode : TRIP	/ALARM	OFF											OFF
Time settings for Unbalance current protection (s) : $(t_{\rm unbc})$ ②	0.5 – 60 (in units of 0.	1)			Toler	ance	: ±2%	$6 \times (t_{un})$	_{bc}) or :	±40ms	, which	never is	lager	10s
Voltage settings for Unbalance voltage	2 – 90 (in units of 1)				Toler	ance	: ±2%	6						30%
protection (%): (U _{unbv}) ②	Working mode : TRIP	/ALARM	OFF											OFF
Time settings for Unbalance voltage protection (s) : (t_{unbv}) ②	0.5 – 60 (in units of 0.				Toler	ance	: ±2%	$6 \times (t_{un})$	_{bv}) or :	±40ms	, which	ever is	lager	10s
Temperature settings for Contact	105 – 155 (in units of 1	10)			Toler	ance	: ±10	% 14						155℃
temperature monitoring ($^{\circ}$ C): ($^{\prime}$ C _{oh}) ($^{\circ}$ 8	Working mode : ALAF													OFF
Time settings for Contact temperature monitoring (s) : (t_{oh}) (s)	50ms or less													_
Switching of starting characteristics	COLD/HOT													COLD
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3														

- ① : The setting current and time settings can be set to 2 type values as "Setting A" and "Setting B".
- 2: If " I_r " is set to "OFF", the Preferential trip alarm1 and Preferential trip alarm2 functions will also be non

- Short time delay trip and instantaneous trip can not both be set to "OFF".

 Thi (L characteristic): Time settings at (I_T)×600% Other characteristics: Time settings at (I_T)×300%
 S: If the Long time delay trip characteristic is Thi (L characteristic): Time setting at (I_P)×600%
- If the Long time delay characteristic are except for Thi (L characteristic) : Time setting at $(I_P) \times 300$.
- $\ensuremath{\textcircled{6}}$: The rated power (\$P_{\rm n}\$) can be specified between 50kW and 9,995kW in unit of 5kW. \bigcirc : If the (I_r) x(0.5 to 2.0) value exceeds the rated current vaue In, the seting current value will be set to the rated current value.
- $\ensuremath{{\bf (8)}}$: This function is optional and can not be install for Fixed type.

- (9): When placing an order of AX106S and AX106H, specify the rated current "In" from 400A or 630A.
- (i): If the products are used in the condition of 3-phase 3-wire, please set the "OFF" setting.
- 1 : Time setting at $(P_{rp}) \times 100\%$.
- ②: Working mode can be set to Trip (Trip the ACB at each settingvalue), Alarm (Output the alarm at each setting value), or OFF (disable the function).
- (3): If the products are used in the 3-phase 3-wire, voltage settings can be selected phase voltage or line voltage.
- $\ensuremath{\textcircled{14}}$: Accuracy at the ambient temperature between 20 50 $^\circ\!\text{C}$
- (5): If not otherwise specified, the product will be delivered with "Default settings" in the table.
 (6): AOX-LSI+ can not be applied to AX120S and AX120H.
- (50Hz or 60Hz).

Setting range of protection functions (Smart type)

Α	0	X —	LS	IG+	916
---	---	-----	----	-----	-----

	(1)			- 0										Default settings 15	
Long time-delay pick-up current	$(I_n) \times 0.4 - 1.0$ (in units													$(I_{\rm n}) \times 1.00$	
$(A):(l_{f})\; \textcircled{1}$	Tolerance of Thi(L characteristics Tripping when $([I_r] \times 1)$. Tolerance of other characteristics	05) < 1	oad cur	rent ≦	pping w ([/ _r]×1.	hen Ioa 2)	d cur	rrent ≦	≦ ([<i>I</i> _r]×	1.05),				_	
Long time-delay time settings (s) : (t_r) ①4	0.5 - 30 (in unitss of 0.	5s)				rance :	-20%	$6 \times t_{\rm r} -$	20ms –	-+0%×	(t _r +30r	ns		10.0s	
Switching of Long time-delay trip characteristics	Thi (L characteristics),	I ^{0.02} t (S	SI), It (VI), I ² t (E	l), I³t, I⁴t	(HVF)								Thi	
Short time delay pick-up current (A) : (I_{sd}) ①	$(I_n) \times 1.0 - 10$ (in units	of 0.5)	or OFF	3	Tole	rance :	±109	%						$(I_n) \times 6$	
Short time delay time settings (ms):	Relay time 50 100 150 200 250 300 350 400 450 500 550 600											400ms			
(t_{sd}) (1)	Resettable time	25	75	125		225 2	275	325	375	425	475	525	575	375ms	
	Total breaking time	100	150	200	250	300 3	350	400	450	500	550	600	650	450ms	
	Ramp characteristic I ²	: ON c	or OFF											OFF	
Zone interlock (Short time-delay trip)	ON or OFF													OFF	
Instantaneous trip pick-up current (A) : (/i) ①	$(I_{\rm n}) \times 1.5 - 16$ (in units	of 0.5)	or OFF	3	Tole	rance :	±159	%						OFF	
Neutral protection pick-up current (A) : (I _N)	$(I_r) \times 0.5 - 2.0$ (in units	of 0.5)	or OFF	7										OFF (3pole, 3phase 3wire $(I_r) \times 1.0$ (Except for the above	
Neutral protection time settings (s) : (t_N)	Link to the time-delay	settings	for Lor	ng time	delay tr	ip and S	Short	time o	lelay tri	p.				_	
Ground fault trip pick-up current (A) : (I_g) ①	$(I_n) \times 0.1 - 1.0$ (in units	of 0.05) or OF	F	Tole	rance :	±109	%						$(I_n) \times 0.2$	
Ground fault trip time settings (ms) : (t_g)	Relay time : $50 - 2000$ i Resettable time : $t_g - 2$ Total breaking time : t_g	ōms		50ms)										300ms	
	Ramp characteristic I ²	: ON c	or OFF											OFF	
Zone interlock (Ground faut trip)	ON or OFF													OFF	
Preferential trip alarm1 pick-up current (A) : (I_{P1})	$(I_{\rm r}) \times 60\% - 95\%$ (in ur	its of 5	%)		Tole	rance :	±109	%						$(I_{\rm r}) \times 80\%$	
Preferential trip alarm1 time settings (s) : (t_{P1}) \bigcirc	$(t_{\rm r}) \times 5\% - 80\%$ (in uni	ts of 5%	6)		Tole	rance :	-20%	6×t _{P1}	–20ms	- 0% >	<t<sub>P1;3</t<sub>	0ms		$(t_{\rm r}) \times 50\%$	
Preferential trip alarm2 pick-up current (A): (IP2)	$(I_{\rm r}) \times 60\% - 95\%$ (in ur	its of 5°	%) or O	FF	Tole	rance :	±109	%						$(I_{\rm r}) \times 80\%$	
Preferential trip alarm2 time settings (s) : (t_{P2}) ⑤	$(t_{\rm r}) \times 5\% - 80\%$ (in uni	s of 5%	6)		Tole	rance :	-20%	$6 \times t_{P2}$	-20ms	- 0%>	<t<sub>P2;3</t<sub>	0ms		$(t_{\rm r}) \times 50\%$	
Voltage settings for Under voltage	100 - 1000 (in units of	5)			Tole	rance :	±1%	,						100V	
protection (V): (U _{uv}) ②③	Working mode : TRIP/	ALARN	1/OFF											OFF	
Time settings for Under voltage protection (s) : (t_{uv}) ②③	0.1 – 300 (in units of 0.	1)			Tole	rance :	±2%	$\times (t_{uv})$) or ±4	10ms, v	vhichev	er is la	ger	10.0s	
Voltage settings for Over voltage	100 - 1000 (in units of	5)			Tole	rance :	±1%	,						725V	
protection (V) : (Uov) 1213	Working mode: TRIP/	ALARN	1/OFF											OFF	
Time settings for Over voltage protection (s) : (t_{ov}) ②③	0.1 – 300 (in units of 0.	1)			Tole	rance :	±2%	$5 \times (t_{ov})$) or ±4	10ms, v	vhichev	er is la	ger	10.0s	
Frequency settings for Under frequency protection (Hz): (F _{uf}) ②	$45 - F_n$ (in units of 0.1) Working mode : TRIP/		1/OFF		Tole	rance :	±0.1	Hz						45Hz OFF	
Time settings for Under frequency protection (s) : (t_{LIF}) ②	0.1 – 300 (in units of 0.		,		Tole	rance :	±2%	$5 \times (t_{\rm uf})$	or ±4	0ms, w	hichev	er is la	ger	10.0s	
Frequency settings for Over	$F_{\rm n}$ – 65 (in units of 0.1)	17)			Tole	rance :	±0.1	Hz						65Hz	
frequency protection (Hz) : (F_{of}) ②	Working mode : TRIP/		1/OFF											OFF	
Time settings for Over frequency protection (s) : (t_{of}) ②	0.1 – 300 (in units of 0.				Tole	rance :	±2%	$5 \times (t_{of})$	or ±4	0ms, w	hichev	er is la	ger	10.0s	
Power settings for Reverse power	$(P_{\rm n}) \times 4\% - 15\%$ (in ur	its of 0	.5%)		Tole	rance :	-20%	6 - +0°	%	-	-			4%	
protection (kW) : (P _{rp}) 6 12	Working mode : TRIP/	ALARN	1/OFF											OFF	
Time settings for Reverse power protection (s) : (t_{rp}) ①②	0.5 – 25 (in units of 0.5				Tole	rance :	-15%	$\times (t_{\rm rp})$	-0ms -	- +15%	$\times (t_{\rm rp})$ +	100ms		5s	
Current settings for Unbalance current	2 – 90 (in units of 1)				Tole	rance :	±5%	,						50%	
protection (%): (I _{unbc}) ②	Working mode : TRIP/	ALARN	1/OFF											OFF	
Time settings for Unbalance current protection (s) : (t_{unbc}) ②	0.5 – 60 (in units of 0.1)			Tole	rance :	±2%	$\times (t_{un})$	_{bc}) or =	±40ms	, which	ever is	lager	10s	
Voltage settings for Unbalance voltage	2 – 90 (in units of 1)				Tole	rance :	±2%	, D						30%	
protection (%) : (U _{unbv}) ②	Working mode : TRIP/ALARM/OFF											OFF			
Time settings for Unbalance voltage protection (s) : (t_{unbv}) ②	0.5 – 60 (in units of 0.1)			Tole	rance :	±2%	$\times (t_{un})$	_{bv}) or	±40ms	, which	ever is	lager	10s	
Temperature settings for Contact	105 – 155 (in units of 10) Tolerance : ±10% (4)											155℃			
temperature monitoring ($^{\circ}$ C): ($^{\circ}$ Coh) ($^{\circ}$ 8)	Working mode : ALAR	M/OFF												OFF	
Time settings for Contact temperature monitoring (s) : (t_{oh}) (s)	50ms or less													_	
Switching of starting characteristics	COLD/HOT													COLD	

- ① : The setting current and time settings can be set to 2 type values as "Setting A" and "Setting B".
- 2: If " $\emph{I}_{\emph{\Gamma}}$ " is set to "OFF", the Preferential trip alarm1 and Preferential trip alarm2 functions will also be non tripping.
- ③: Short time delay trip and instantaneous trip can not both be set to "OFF".
 ④: Thi (L characteristic): Time settings at (I_r)x600% Other characteristics: Time settings at (I_r)x300%
 ⑤: If the Long time delay trip characteristic is Thi (L characteristic): Time setting at (I_P)x600% If the Long time delay characteristic are except for Thi (L characteristic) : Time setting at (I_P) x300.
- 6: The rated power (P_n) can be specified between 50kW and 9,995kW in unit of 5kW.
- \bigcirc : If the (I_r)x(0.5 to 2.0) value exceeds the rated current vaue In, the seting current value will be set to the rated current value.
- (8): This function is optional and can not be install for Fixed type.

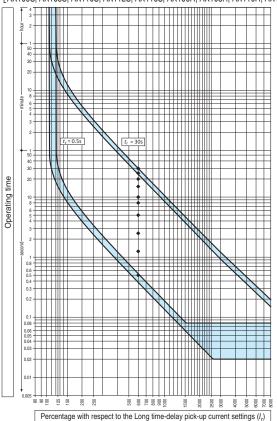
- 9 : When placing an order of AX106S and AX106H, specify the rated current " \emph{I}_{n} " from 400A or 630A.
- (i): If the products are used in the condition of 3-phase 3-wire, please set the "OFF" setting.
- 1 : Time setting at $(P_{rp}) \times 100\%$.
- (2): Working mode can be set to Trip (Trip the ACB at each settingvalue), Alarm (Output the alarm at each setting value), or OFF (disable the function).
- (3): If the products are used in the 3-phase 3-wire, voltage settings can be selected phase voltage or line voltage.
- 4 : Accuracy at the ambient temperature between 20 50°C .
- (5): If not otherwise specified, the product will be delivered with "Default settings" in the table.
 (6): AOX-LSI+ can not be applied to AX120S and AX120H.
- (50Hz or 60Hz).

Measurement items (Smart type)

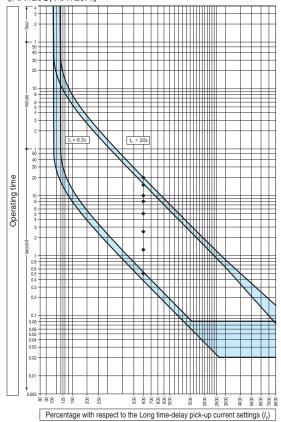
Main Measurement items and those accuracies are as follows.

Measurement items		Measurement accuracy ①
Voltage	Line voltage (instantaneous) Line voltage (maximum) Line voltage (minimum)	Class 0.5
	Line voltage (average) Phase voltage (instantaneous) ② Phase voltage (maximum) ②	Class 0.5
	Phase voltage (minimum) ② Phase voltage (average) ②	
Voltage unbalance	Line voltage unbalance Line voltage unbalance (maximum)	Class 1
	Line voltage unbalance (minimum) Phase voltage unbalance ②	
	Phase voltage unbalance (maximum) ② Phase voltage unbalance (minimum) ②	
Phase current	,	Class 0.5
	Phase current (average) Demand value of phase current Demand value of phase current (maximum)	
Current unbalance	Current unbalance (instantaneous) Current unbalance (maximum) Current unbalance (minimum)	Class 1
Power factor	Power factor (instantaneous) Power factor (maximum)	Class 0.5
Frequency	Frequencyr (instantaneous) Frequency (maximum) Frequency (minimum)	Class 0.02

① Class is the measurement accuracy specified in IEC61557-12.


Measurement items		Measurement accuracy ①
Power	Active power (instantaneous)	Class 1
	Active power (maximum)	
	Active power (minimum)	
	Demand value of active power	
	Demand value of active power (maximum)	
	Total active power	
	Reactive power (instantaneous)	Class 2
	Reactive power (maximum)	
	Reactive power (minimum)	
	Demand value of reactive power	
	Demand value of reactive power (maximum)	
	Total reactive power	
	Apparent power	
	(instantaneous)	
	Apparent power (maximum)	
	Apparent power (minimum)	
	Demand value of apparent power	Class 1
	Demand value of apparent power (maximum)	
	Total apparent power	
Energy	Active energy	Class 1
	Reactive energy	Class 2
	Apparent energy	Class 1
Total harmonic distortion	Line voltage (instantaneous)	
	Line voltage (maximum)	
	Line voltage (minimum)	
	Phase voltage (instantaneous)	
	Phase voltage (maximum) ②	Class 1
	Phase voltage (minimum) 2	
	Phase current (instantaneous)	
	Phase current (maximum)	
	Phase current (minimum)	
	, , ,	

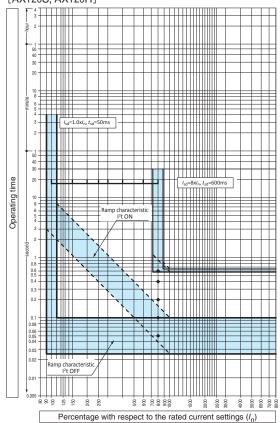
② It is possible to measure if the circuit is 3pole 4wire.


Protection characteristic for standard type (AOX-LI, AOX-LSI, AOX-LSIG)

Long time delay trip characteristics

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

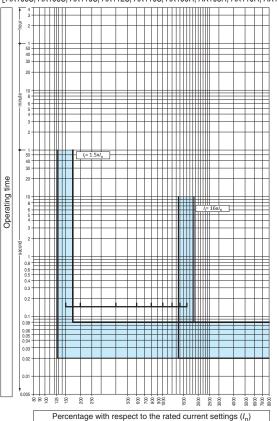
[AX120S, AX120H]

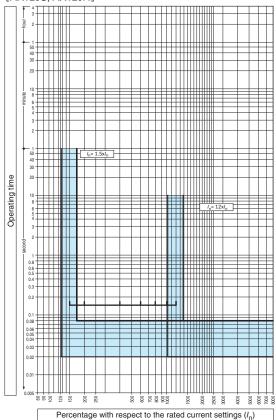


Short time delay trip characteristics

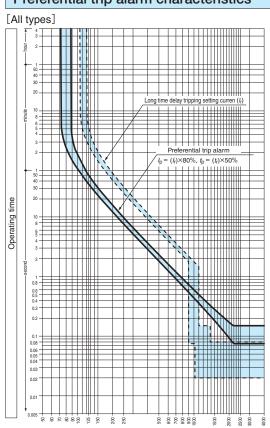
[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

[AX120S, AX120H]


* Protection characteristic that is only included with AOX-LSI and AOS-LISG.

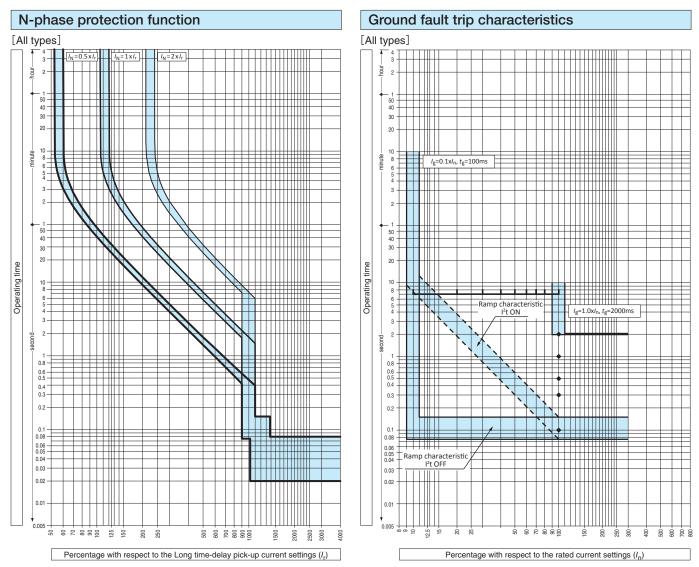

Protection characteristic for standard type (AOX-LI, AOX-LSI, AOX-LSIG)

Instantaneous tripping characteristics


[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

[AX120S, AX120H]

Preferential trip alarm characteristics



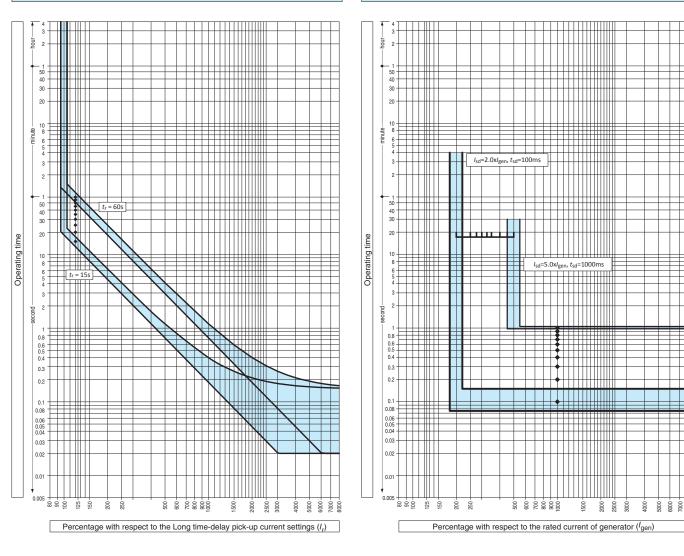
Percentage with respect to the Long time-delay pick-up current settings $(I_{\rm F})$

*1 : Long time, Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

 $I_{\rm r}\!\!=\!\!I_{\rm n},\, t_{\rm r}\!\!=\!\!5({\rm s}),\, I_{\rm i}\!\!=\!\!12\!\times\!I_{\rm n},\, I_{\rm sd}\!\!=\!\!10\!\times\!I_{\rm n},\, t_{\rm sd}\!\!=\!\!100({\rm ms}),\, {\rm I}^2{\rm t}\!\!=\!\!{\rm OFF}$

Protection characteristic for standard type (AOX-LI, AOX-LSI, AOX-LSIG)

* Protection characteristic that is only included with AOX-LSIG.



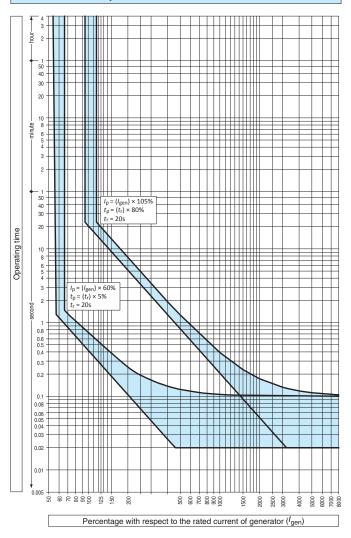
Protection characteristic for standard type (AOX-LSIR)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Long time delay trip characteristics

Short time delay trip characteristics

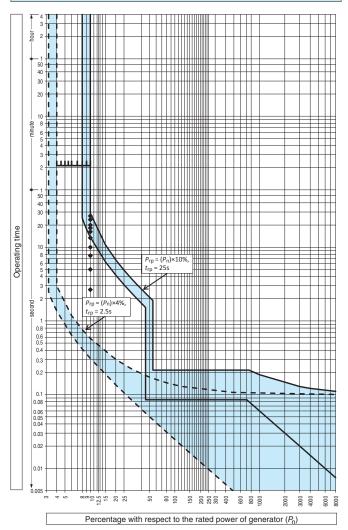
Protection characteristic for standard type (AOX-LSIR)


[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Instantaneous tripping characteristics

Percentage with respect to the rated current of generator (Igen)

Preferential trip alarm characteristics

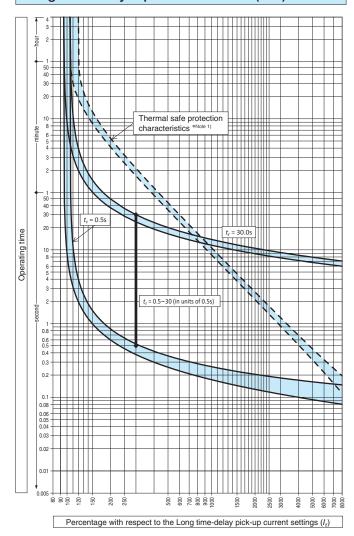


Protection characteristic for standard type (AOX-LSIR)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Reverse power tripping characteristics

Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)


[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Long time delay trip characteristics (Thi)

Depart of the property of t

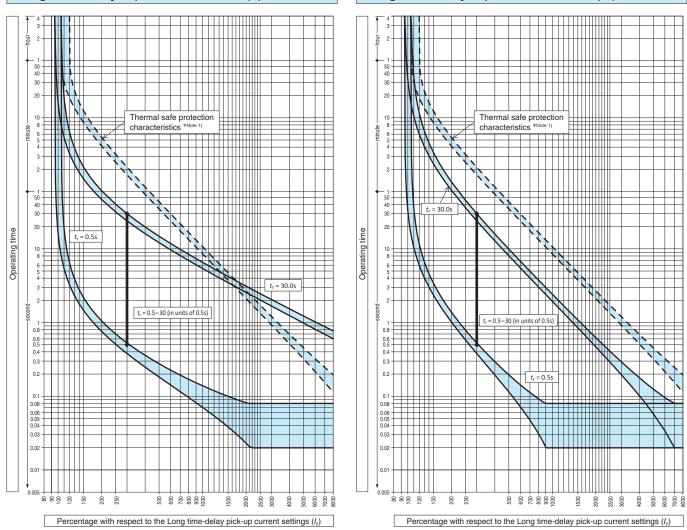
Percentage with respect to the Long time-delay pick-up current settings (I_r)

Long time delay trip characteristics (I0.02t)

*Note 1) : Thermal safe protection characteristics refer to the overheating protection characteristics of the ACB. These characteristic are identical to the characteristic curve for long time delay trip characteristics (Thi) with $I_r = I_n$, $I_r = 30.0$ s. In the area where the operating time of thermal safe protection characteristic is faster than the operating time of Long time delay trip

and the ACB is tripped.

characteristic, the thermal safe protection characteristic takes priority



Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

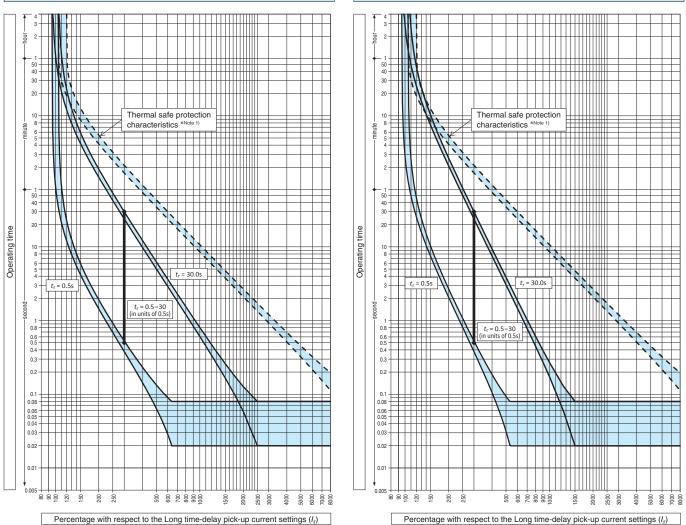
[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Long time delay trip characteristics (It)

Long time delay trip characteristics (I2t)

* Note 1): Thermal safe protection characteristics refer to the overheating protection characteristics of the ACB.

These characteristic are identical to the characteristic curve for long time delay trip characteristics (Thi) with $I_r = I_n$, $t_r = 30.0$ s.


In the area where the operating time of thermal safe protection characteristic is faster than the operating time of Long time delay trip characteristic, the thermal safe protection characteristic takes priority and the ACB is tripped.

Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

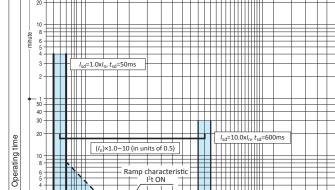
Long time-delay trip characteristics (I3t)

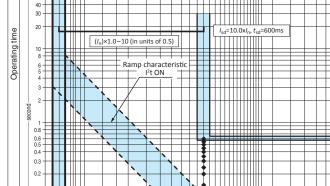
Long time-delay trip characteristics (I4t)

*Note 1): Thermal safe protection characteristics refer to the overheating protection characteristics of the ACB.

These characteristic are identical to the characteristic curve for long time delay trip characteristics (Thi) with $I_r = I_n$, $t_r = 30.0$ s.

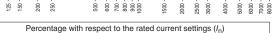
In the area where the operating time of thermal safe protection characteristic is faster than the operating time of Long time delay trip characteristic, the thermal safe protection characteristic takes priority and the ACB is tripped.

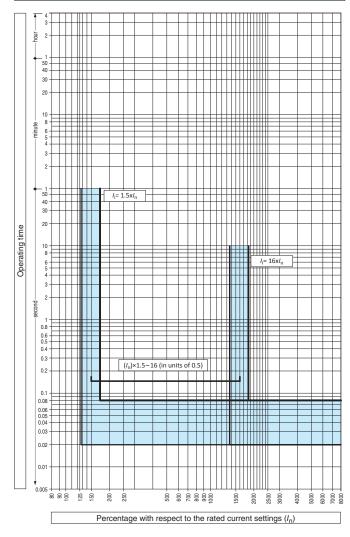



Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

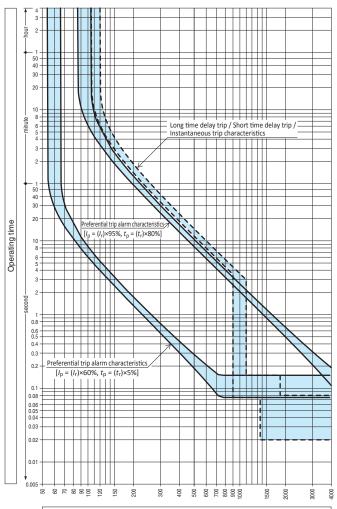
Short time-delay trip characteristics





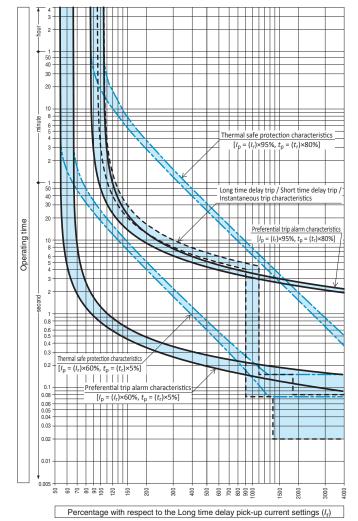
Ramp characteristic

0.01


Instantaneous tripping characteristics

Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]


Preferential trip alarm characteristics

Percentage with respect to the Long time delay pick-up current settings (I_r)

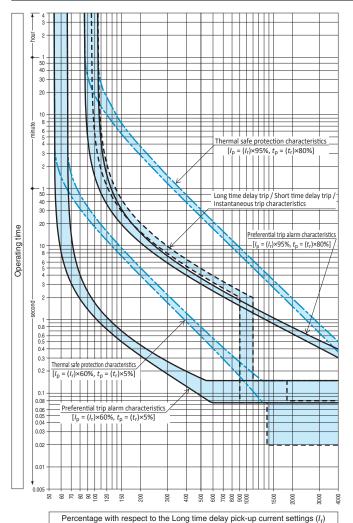
- *1: Characteristics of preferential trip alarm 1 and preferential trip alarm 2 when the long time-delay trip setting is Thi (standard
- *2: Long time, Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

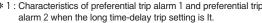
 $I_{\rm r} = I_{\rm n}, \, t_{\rm r} = 10.0 \, {\rm s}, \, I_{\rm sd} = 10.0 \, {\rm \times} I_{\rm n}, \, t_{\rm sd} = 100 \, {\rm ms}, \, I_{\rm i} = 16 \, {\rm \times} I_{\rm n}, \, I^2 {\rm t} = {\rm OFF}$

- * 1 : Characteristics of preferential trip alarm 1 and preferential trip alarm 2 when the long time-delay trip setting is $I^{0.02}t$.
- *2: Long time, Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

 $I_{\rm r} = I_{\rm n}, \, t_{\rm r} = 10.0 \, {\rm s}, \, I_{\rm sd} = 10.0 \, {\rm \times} I_{\rm n}, \, t_{\rm sd} = 100 \, {\rm ms}, \, I_{\rm i} = 16 \, {\rm \times} I_{\rm n}, \, I^2 t = {\rm OFF}$

* 3 : The thermal safe protection characteristic is the overheating protection characteristic of the air circuit breaker. This characteristic is the preferential trip alarm characteristic corresponding to the thermal safe protection characteristic of the long time-delay trip characteristic (I0.02t) (Please refer to P. 38).

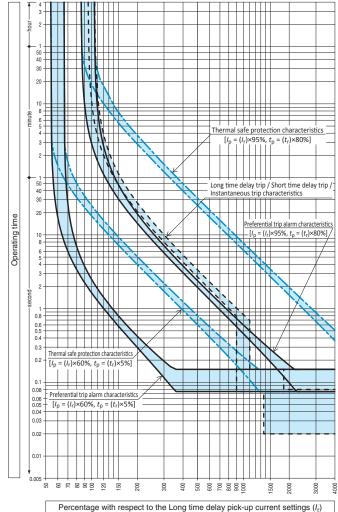

In areas where the thermal safe protection characteristic operating time is faster than the preferential trip alarm characteristic operating time, the preferential trip alarm is activated with priority on the thermal safe protection


Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Preferential trip alarm characteristics

* 1 : Characteristics of preferential trip alarm 1 and preferential trip



*2: Long time. Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

$$I_r = I_n$$
, $t_r = 10.0$ s, $I_{sd} = 10.0$, $t_{sd} = 100$ ms, $I_i = 16 \times I_n$, $I^2 t = OFF$

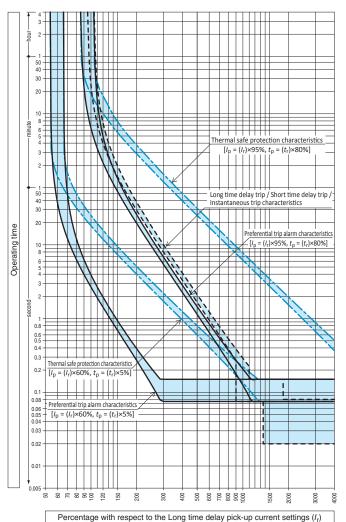
* 3: The thermal safe protection characteristic is the overheating protection characteristic of the air circuit breaker. This characteristic is the preferential trip alarm characteristic corresponding to the thermal safe protection characteristic of the long time-delay trip characteristic (It) (Please refer to P. 39). In areas where the thermal safe protection characteristic

operating time is faster than the preferential trip alarm characteristic operating time, the preferential trip alarm is activated with priority on the thermal safe protection

* 1 : Characteristics of preferential trip alarm 1 and preferential trip alarm 2 when the long time-delay trip setting is I2t.

*2 · Long time. Short time and Instantaneous trip characteristics. shown with the dashed line are characteristics under the following conditions.

$$I_{\rm r} = I_{\rm n}, \ t_{\rm r} = 10.0 \, {\rm s}, \ I_{\rm sd} = 10.0, \ t_{\rm sd} = 100 \, {\rm ms}, \ I_{\rm i} = 16 \times I_{\rm n}, \ I^2 {\rm t} = {\rm OFF}$$

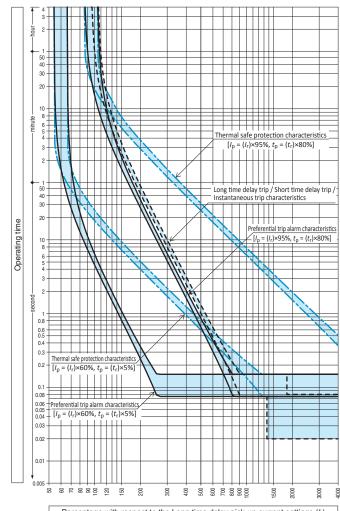

* 3: The thermal safe protection characteristics are the overheating protection characteristics of the air circuit breaker. These characteristics are the preferential trip alarm characteristics corresponding to the thermal safe protection characteristics of the long time-delay trip characteristics (I2t) (Please refer to P. 39).

In areas where the thermal safe protection characteristic operating time is faster than the preferential trip alarm characteristic operating time, the preferential trip alarm is activated with priority on the thermal safe protection

Protection characteristics for smart type (AOX-LSI+, AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Preferential trip alarm characteristics


* 1 : Characteristics of preferential trip alarm 1 and preferential trip alarm 2 when the long time-delay trip setting is I3t.

*2: Long time, Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

 $I_{\rm r} = I_{\rm n}, t_{\rm r} = 10.0 \text{s}, I_{\rm sd} = 10.0, t_{\rm sd} = 100 \text{ms}, I_{\rm i} = 16 \times I_{\rm n}, I^2 \text{t} = \text{OFF}$

* 3: The thermal safe protection characteristics are the overheating protection characteristics of the air circuit breaker. These characteristics are the preferential trip alarm characteristics corresponding to the thermal safe protection characteristics of the long time-delay trip characteristics (I3t) (Please refer to P. 40).

In areas where the thermal safe protection characteristic operating time is faster than the preferential trip alarm characteristic operating time, the preferential trip alarm is activated with priority on the thermal safe protection

Percentage with respect to the Long time delay pick-up current settings (I_r)

* 1 : Characteristics of preferential trip alarm 1 and preferential trip alarm 2 when the long time-delay trip setting is I4t.

*2: Long time, Short time and Instantaneous trip characteristics shown with the dashed line are characteristics under the following conditions.

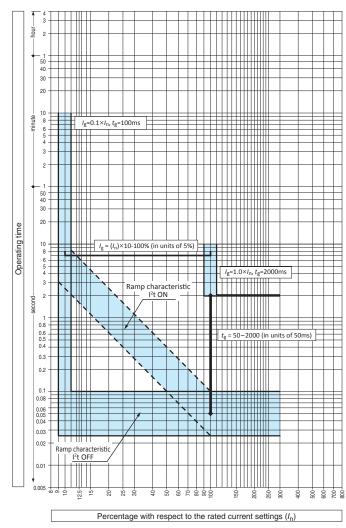
 $I_r = I_n$, $t_r = 10.0$ s, $I_{sd} = 10.0$, $t_{sd} = 100$ ms, $I_i = 16 \times I_n$, $I^2 t = OFF$

* 3 : The thermal safe protection characteristics are the overheating protection characteristics of the air circuit breaker.

These characteristics are the preferential trip alarm characteristics corresponding to the thermal safe protection characteristics of the long time-delay trip characteristics (I4t) (Please refer to P. 40).

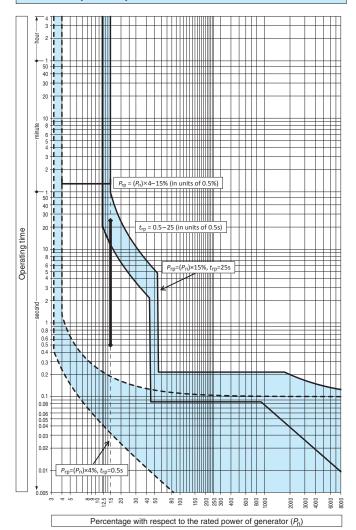
In areas where the thermal safe protection characteristic operating time is faster than the preferential trip alarm characteristic operating time, the preferential trip alarm is activated with priority on the thermal safe protection

Protection characteristics for smart type (AOX-LSIG+)


[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Neutral protection characteristics

Percentage with respect to the Long time-delay pick-up current settings (I_r)


Ground fault trip characteristics

Protection characteristics for smart type (AOX-LSIG+)

[AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H]

Reverse power protection charcteristics

Contact module

Contact module that provides a contact output to trip the ACB when the Over-Current Release (OCR) protection function is activated or an alarm, malfunction or switching are triggered.

Standard type

Contact outputs are provided with the following output terminal layouts. When several trip or alarm function as follows works, the condition of trip or alarm is indicated on the display of OCR.

Output terminal number	Contact Output Type	Operational mode ①	Note
05 — 15	Long time delay trip	Self-hold	_
05 — 25	Short time delay trip, Instantaneous trip, Making current release, Instantaneous override trip	Self-hold	_
05 — 16	Ground fault trip	Self-hold	AOX-LSIG only
05 — 16	Reverse power trip	Self-hold	AOX-LSIR only
05 — 06	Preferential trip alarm	Auto-reset	_
	Either trip operation occurs, excluding reverse power trip protection	Self-hold	
05 — 26	Pick up operation occurs with long time-delay trip protectionMalfunction of hardware	Auto-reset	_

① Self-hold: The contact is closed and held on the closed position when the ACB is tripped by each protection function of above.

If the Self-hold is unlocked, contact output condition can be unlocked from "close" to "open", and the indication on the display is reset. * Self-hold can be unlocked in two ways as follows,

- · Long press of "i" button in Over current release.
- · Apply 24V DC to the Digital input terminal.

Auto-reset: The contacts are closed when the working signal is input, the contacts are opened automatically when the working signal is reset.

Smart type

For smart types, one contact output corresponding to the following protection operation and alarm operation can be assigned to each of the five types of output terminal numbers of above. When the each operation works, the conditions of operation are indicated on the display of OCR.

	T .				T
Operation	Contact Output Types	Operational mode ①	Operation	Contact Output Types	Operational mode ①
	Trip test	Self-hold	1	Disconnection of N-phase	Selectable from Self-hold/Auto-reset/Pulse
	Unbalance voltage protection (UNBV)	Self-hold		Malfunction of hardware	Selectable from Self-hold/Auto-reset/Pulse
	Unbalance current protection (UNBC)	Self-hold		Abnormal temperature in OCR	Selectable from Self-hold/Auto-reset/Pulse
	Over voltage protecton (OV)	Self-hold		Long time-delay trip pick up	Selectable from Self-hold/Auto-reset/Pulse
Tuin	Under voltage protection (UV)	Self-hold		Pretrip alarm 1	Selectable from Self-hold/Auto-reset/Pulse
Trip operation	Ground fault protection (GF)	Self-hold	Alarm output	Pretrip alarm 2	Selectable from Self-hold/Auto-reset/Pulse
Operation	Making current release (MCR)	Self-hold		Voltage drop of built-in battery	Selectable from Self-hold/Auto-reset/Pulse
	Instantaneous override trip (IO)	Self-hold		Alarm group ②	Selectable from Self-hold/Auto-reset/Pulse
	Instantaneous trip (INST)	Self-hold		Custom alarm 1 to 12 ③	Selectable from Self-hold/Auto-reset/Pulse
	Short time-delay trip (ST)	Self-hold		Contact temperature monitoring (OH)	Selectable from Self-hold/Auto-reset/Pulse
	Long time-delay trip (LT)	Self-hold		Unbalance voltage protection (UNBV)	Selectable from Self-hold/Auto-reset/Pulse
0	Protection function group B	Selectable from Self-hold/Auto-reset/Pulse		Unbalance current protection (UNBC)	Selectable from Self-hold/Auto-reset/Pulse
Operation of ACB	ON operation of ACB	Selectable from Self-hold/Auto-reset/Pulse		Reverse power trip function (RP)	Selectable from Self-hold/Auto-reset/Pulse
OLAGB	OFF operation of ACB	Selectable from Self-hold/Auto-reset/Pulse		Over frequency protection (OF)	Selectable from Self-hold/Auto-reset/Pulse
Temporary	Temporary stop of protection	Selectable from Self-hold/Auto-reset/Pulse		Under frequency protection (UF)	Selectable from Self-hold/Auto-reset/Pulse
motion restrain	function ⑤	Selectable from Self-Hold/Auto-reset/Pulse		Over voltage protecton (OV)	Selectable from Self-hold/Auto-reset/Pulse
①: Self-hold:			Under voltage protection (UV)	Selectable from Self-hold/Auto-reset/Pulse	

- - a) In case of "Trip operation"
 - The contact is closed and held on the closed position when the ACB is tripped by each protection function of above.

If the Self-hold is unlocked, contact output condition can be unlocked from "close" to "open", and the indication on the display is reset.

- * Self-hold can be unlocked in two ways as follows.
 - · Long press of "ON" button in Over current release.
- Apply 24V DC to the Digital input terminal. (Setting of digital input should be adjusted to "Remote reset")
- b) In case of "Operation of ACB", "Temporary motion restrain" and "Alarm out put" The contact is closed and held on the colsed position when the "Operation of ACB" or "Temporary motion restrain" or "Alarm out put" works.

If the Self-hold is unlocked, contact output condition can be unlock from "close" to "open", and the indication on the display is reset.

(Setting of digital input should be adjusted to "Remote reset")

Auto-reset: The contacts are closed when the working signal is input, the contacts are opened automatically when the working signal is reset.

Pulse :Pulse signal outputs when the "Operation of ACB" or "Temporary motion restrain" or "Alarm out put" is detected, and the contact output is automatically reset after the setting time (0.1s - 5s) of pulse signal has passed.

- (2): If either of the functions selected from the items above are activated, the alarm group provides a contact output.
 - Default settings are the four types: Short time-delay trip, Instantaneous trip, Making current release, and Instantaneous override trip
- ③: All 12 types of alarms can be set as functions that output an alarm for each measurement
- 4 : For pulse settings, a pulse time can be set between 0.1 seconds and 5 seconds in 0.1-second increments.
- ⑤ : Temporary stop for Contact temperature monitoring (OH), Unbalance voltage protection (UNBV), Unbalance current protection (UNBC), Over voltage protection (OV), Under voltage protection (UV), Reverse power trip (RP), Over frequency protection (OF), and Under frequency protection (UF).
- 6 : A delay up to 150 ms occurs from when OCR is activated until a contact signal is output.
- (7): Operation of contact modules requires control power (24V DC) to be supplied.

Ratings of the contact

Voltage (V)	Resistive load (A)	Min. applicable load
250 AC	3	5V
30 DC	3	10mA

FAULT TRIP switch

Switch that provides an electrical indication when the Over-Current Release (OCR) has activated. Max. 2 switches can be installed.

- *When 2 are installed, they cannot be used in combination with the Ready to close switch and Trip command indicator.
- *The FAULT TRIP display switch does not function when the mechanical reset setting dial is "AUTO."

Trip command indicator

Switch that provides an electrical indication that a trip command is being applied to the ACB.

Activated with an over-current release, continuously-rated shunt trip device, under voltage trip device, or if the OFF button is pressed.

* If the Over-Current Release (OCR) activates when the Mechanical reset setting dial is "AUTO," the total operating time of the Trip command indicator is up to 40ms.

Ratings of FAULT TRIP switch / Trip command indicator

	Groups	Voltage (V)		Current (A)	Min. applicable load
Utilization category AC-12/DC-12 ①	Standard	AC	100-380	5.0	15V
			381 – 480	5.0	
			24	5.0	
		DC	48	2.5	2mA
		DC	125	0.4	
			240	0.2	

①: Based on IEC60947-5-1.

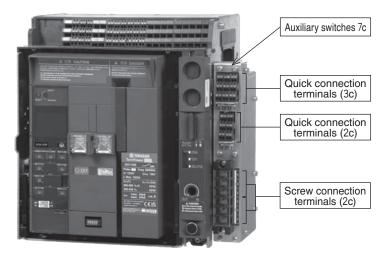
ON – OFF Cycle Counter

The ON-OFF cycle counter is a 5-digit readout that shows the number of ON-OFF cycles of the ACB. Counter readings serve as a guide for maintenance or inspection.

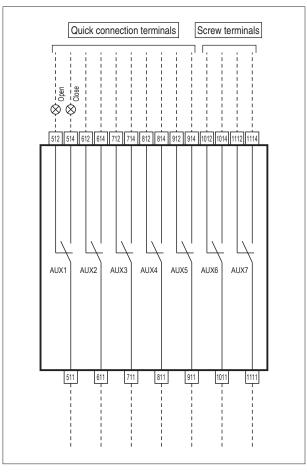
7 Other Accessories

Auxiliary switches 7c

Draw-out type switch that provides an electrical indication of the "ON" or "OFF" state of an ACB.


Auxiliary switch 7c is mounted to the side of the draw-out cradle, and comprises five quick connection terminals and two screw connection terminals.

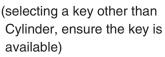
Different from Auxiliary switch 4c, the operating position is only in the connected position.


Ratings of auxiliary switch 7c

	Groups	Voltage (V)		Current (A)	Min. applicable load	
Utilization category AC-12/DC-12 ①	Standard	AC	100-380	5.0		
			381 – 480	5.0		
			24	5.0	15V	
			DC	48	2.5	2mA
			DC	125	0.4	
			250	0.2		

- ①: Based on IEC60947-5-1.
- ②: Chattering due to ON-OFF operation of the ACB lasts for less than 30 ms (There is some fluctuation depend on the ON-OFF cycles of ACB). Take note when applying to circuits.
- ③: Do not connect an auxiliary switch to the continuously-rated shunt trip device and continuously-rated shunt trip 2 circuits. Doing so may cause failure.

Wiring diagram and terminal number for Auxiliary switch 7c



Key lock

Device that locks the ACB in the closed position and prevents operation without the key.

This is a lock in OFF type that disables the ACB to be placed in the open position.

* Five types of keys are available: Cylinder, Ronis, Profalux, Kirk, or KLS.
(selecting a key other than

OFF padlock

Used to lock the ACB in the open position. Up to three padlocks with a ø6 hasp can be used. Padlocking is possible only when the ON-OFF indicator shows OFF.

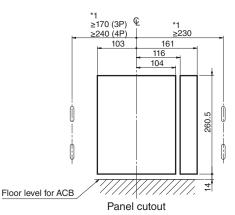
* OFF padlock can not be fitted with Key lock (Lock in OFF).

Inter-pole barrier

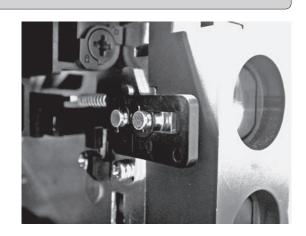
An inter-pole barrier prevents a possible short-circuit due to foreign objects entering between the main circuit terminals, thus enhancing operational reliability of the ACB.

This barrier can be applied to fixed type (front terminals, vertical terminals, horizontal terminals), and draw-out type with the vertical terminals and horizontal terminals.

- *1: Interpole-barrier can not be fitted with Conductive adapter.
- *2: Cannot be used for AX120S and AX120H.



Racking interlock


Device that prevents the draw-out handle from being inserted when the switchboard door is open.

To use this device, install it with the following panel cutout dimensions.

- *1 : If using in combination with a door flange or IP cover, install the panel cutout specified for each device.
- *2 : Contact TERASAKI to use in combination with auxiliary switch 7c or a mechanical interlock.

- € : Center line
- *1 : Panel hinge position (Min)

Control circuit terminal cover

A control circuit terminal cover protects the terminal blocks for auxiliary switches, position switches, and control circuits from being accidentally touched, thus enhancing safety.

Note: 1) Can not be used for the fixed type.

Note: 2) Can not be used with Auxiliary 7c.

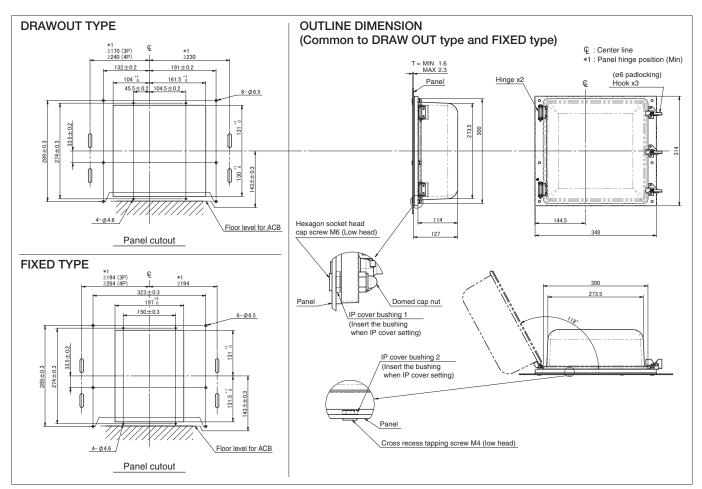
Door flange

Use this as a decorative panel to cover the panel cutout in the front of the switchboard.

Two protection specifications that comply with IEC60529 standards are available: IP20 and IP31.

Note: 1) Door flange can notbe fitted IP cover.

Note: 2) Contact TERASAKI to use in combination with a door interlock.


IP cover

This is a left-opening front protection cover that provides IP55 protection compliant with EC60529 standards.

The IP cover can be installed, even if the ACB is in the ISOLATED position.

Note: 1) Contact TERASAKI to use in combination with a door interlock.

Note: 2) Cannot be fitted with door flange.

Sensor for neutral line

This is an externally connected sensor that provides N-phase protection using a 3-pole ACB for 3-phase 4-wire power distribution.

Mechanical interlock (side-by-side type)

Device for interlocking two ACBs in either horizontal or vertical arrangements.

Helps to prevent parallel operation of the system when one of the ACBs is closed.

In conjunction with an electrical interlock, it will enhance safety and reliability of power distribution systems.

The following specifications can be selected as the pitch between the left and right ACBs.

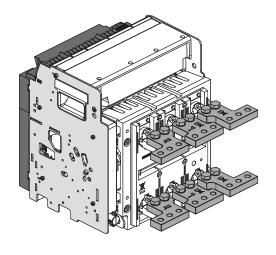
- 3-pole breaker : 600mm / 700mm / 800mm
- 4-pole breaker: 600mm / 700mm / 800mm / 900mm

Note: 1) Contact TERASAKI to use in combination with a door interlock or racking interlock.

Note: 2) Cannot be fitted with auxiliary switch 7c.

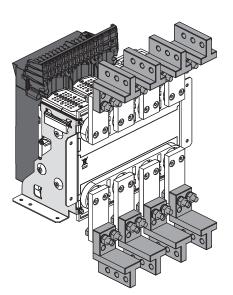
Remote command module

Module that connects a smart type over-current release, continuously-rated shunt trip device and latch release coil, to issue trip commands or closing commands to an ACB via communication module.

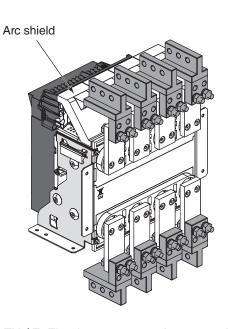


Conductive adapter

Connection conversion adapter for horizontal terminals and front terminals. Two types are available: horizontal extension adapter and vertical extension adapter. They can be used for both draw-out type and fixed type ACBs.

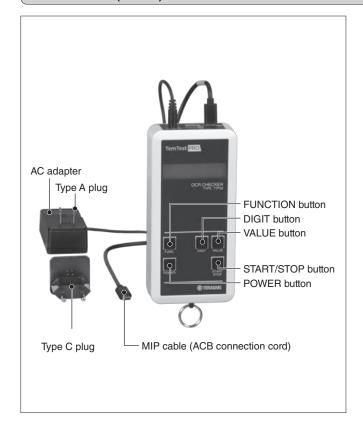

Conductive adapter	Type	Applicable terminal arrangements
Horizontal extension adapter	AZX-1TH	Horizontal terminals. Front connections.
Vertical extension adapter	AZX-1TF	Front connections

①: When using a conductive adapter with a fixed type ACB, always use an arc shield in the case of connection example 2.



[AZX-1TH Draw-out type, horizontal terminals]

[AZX-1TH Draw-out type, front terminals]



[AZX-1F Fixed-type, connection example1]

[AZX-1F Fixed-type, connection example2]

OCR checker (TTP00)

The TTP00 type OCR checker allows the long time-delay trip, short time-delay trip, instantaneous trip, ground fault trip, reverse power trip, and Preferential trip alarm function of over-current releases to be checked in the field.

Ratings / Specifications

Туре	TTP00	
Power Source	Single-phase 100 to 240V AC, 50/60Hz or A alkaline batteries 1.5V × 4 or nickel-metal hydride rechargeable batteries 1.2V × 4	
Power Consumption	3VA	
Application	Long time-delay trip function check (Setting current and time-delay values) Short time-delay trip function check (Setting current and time-delay values) Instantaneous trip function check (Setting current value) Preferential trip alarm function check (Setting current and time-delay values) Ground fault trip function check (Setting current and time-delay values) Reverse power trip function check (Setting current and time-delay values) Setting of Zone interlock (Short time-delay, Ground fault) Setting of time	
Measurement of set current values ①	Display 6-digit digital display Range 1A – 199,999A	
Measurement of tripping time values	 Display Digital display (0.01s unit for 9.99s or less, 0.1s unit for 10.0s or more) Range 0.01 – 999.9s 	
Outline Dimensions	80 mm(W) \times 165 mm(H) \times 35 mm(D)	
Weight	0.4kg (including accessories)	
Accessories	MIP cable 2m × 1pc AC adapter (with power cord 1.9m) × 1unit AC adapter plug Type A (for domestic use) × 1pc Type C (for Europe) × 1pc	

^{(1):} Measurement method based on digital signal output.

Operation Environments

Standard environment

The standard environment for ACBs is as follows:

Max. permissible storage temperature +60°C, Storage temperature

> Min. permissible storage temperature -20°C. The average temperature for 24 hours must

not exceed 35°C.

Operating temperature Max. permissible operating temperature

Min. permissible operating temperature –5°C. The average temperature for 24 hours must

not exceed 35°C.

Below 85% Relative humidity

Vibration / Shock Not subjected to abnormal vibrations or

shocks.

Below 2000m **Attitude**

Atmosphere Excessive water vapor, oil vapor, smoke, dust, or corrosive gases must not exist.

Sudden change in temperature, condensation,

or icing must not occur.

According to the instruction of mounting on Mounting condition

the catalogue and manuals.

Expected service life is 15 years under the Guideline for renewal

standard environment.

Special environment Coming soon

Tropicalization (Fungus and moisture treatment)

Specify this treatment when the ACB is used under high temperature and high-humidity conditions.

Ambient temperature Max. permissible ambient temperature +60°C

Relative humidity Max. permissible humidity 95% rel

(No condensation)

Cold climate treatment

Specify this treatment when the ACB is used in cold areas.

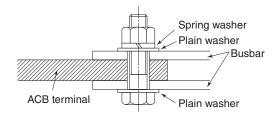
Storage temperature Max. permissible storage temperature +60°C,

Min. permissible storage temperature -40°C

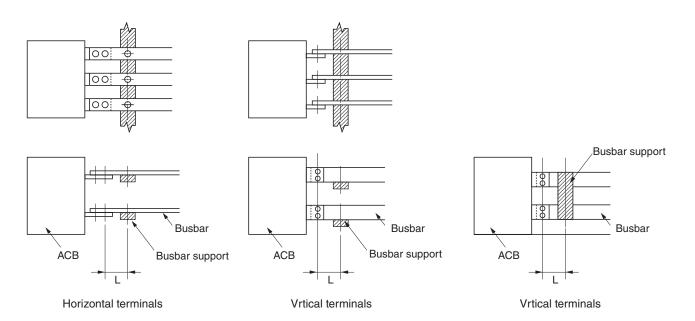
(No condensation)

Operating temperature Max. permissible operating temperature +40°C,

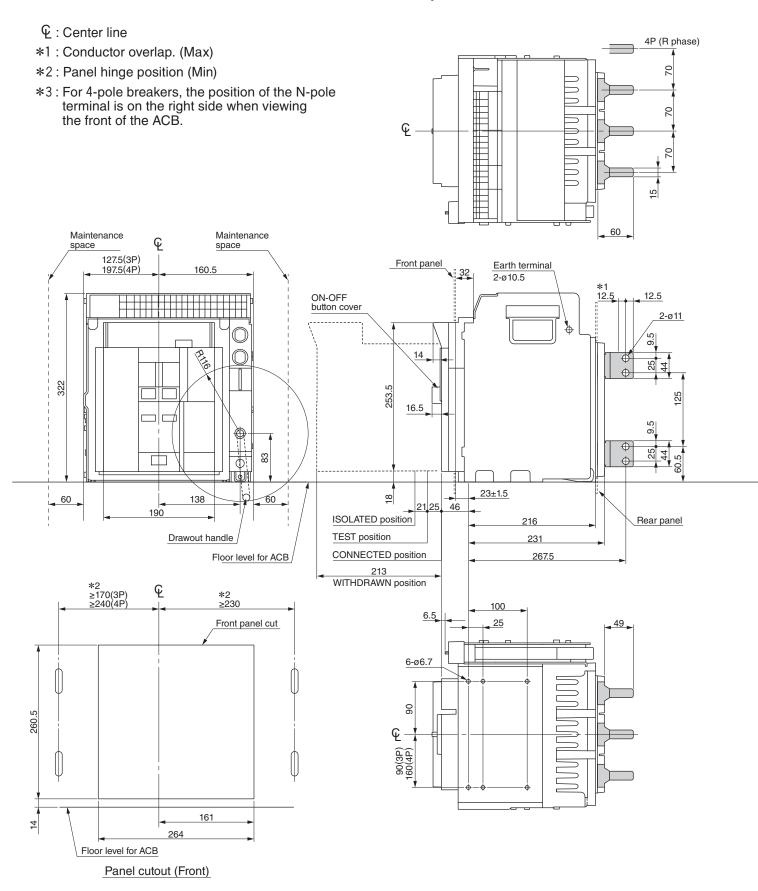
Min. permissible operating temperature -25°C


Anti-corrosion treatment

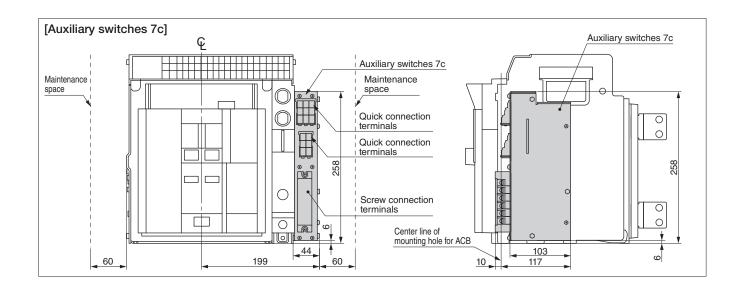
Specify this treatment when the ACB is used in a corrosive atmosphere

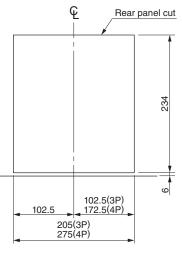

9 Busbars connection

When two busbars are connected to a terminal stud of ACB, sandwich the terminal stud between the two busbars to utilize both surfaces of the terminal. A spring and plain washer must be used in conjunction with the busbar bolt and nut as below.

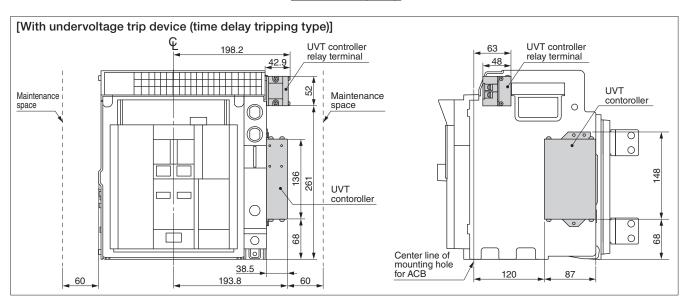

10 Recommendation for Busbars connection

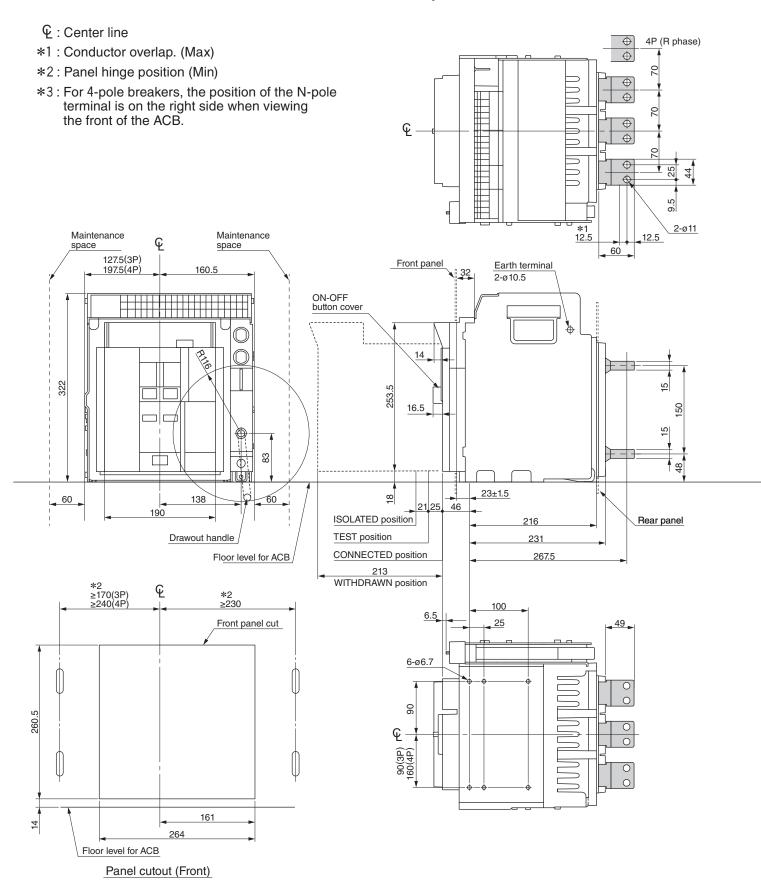
The busbars to the ACB should be firmly supported near the ACB terminal. Fault currents flow through the busbars developing a large electromagnetic force between the busbars. The support must be strong enough to withstand such forces and ensure the enough insulating distance. The ACB should not be relied on as single support.

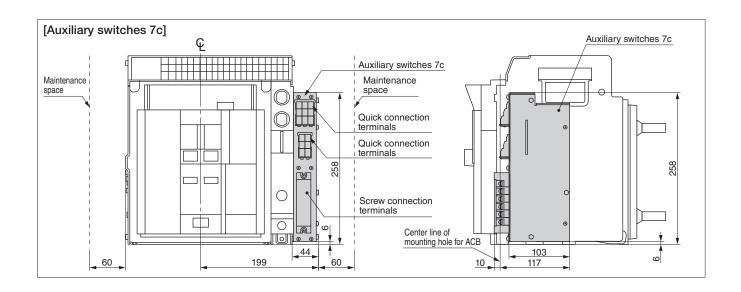


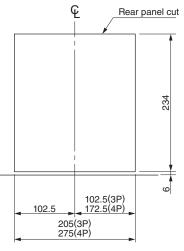

The maximum distance "L" of the connection point of ACB to first basbur support should be 300mm.

• Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D Vertical terminals

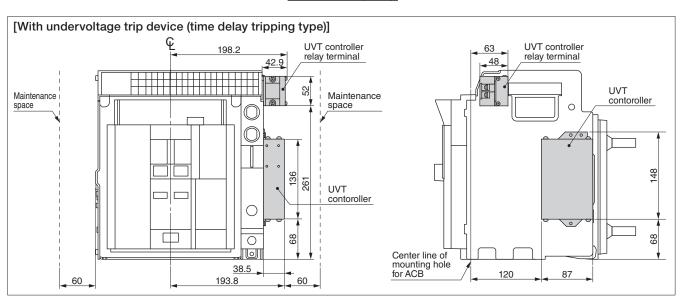


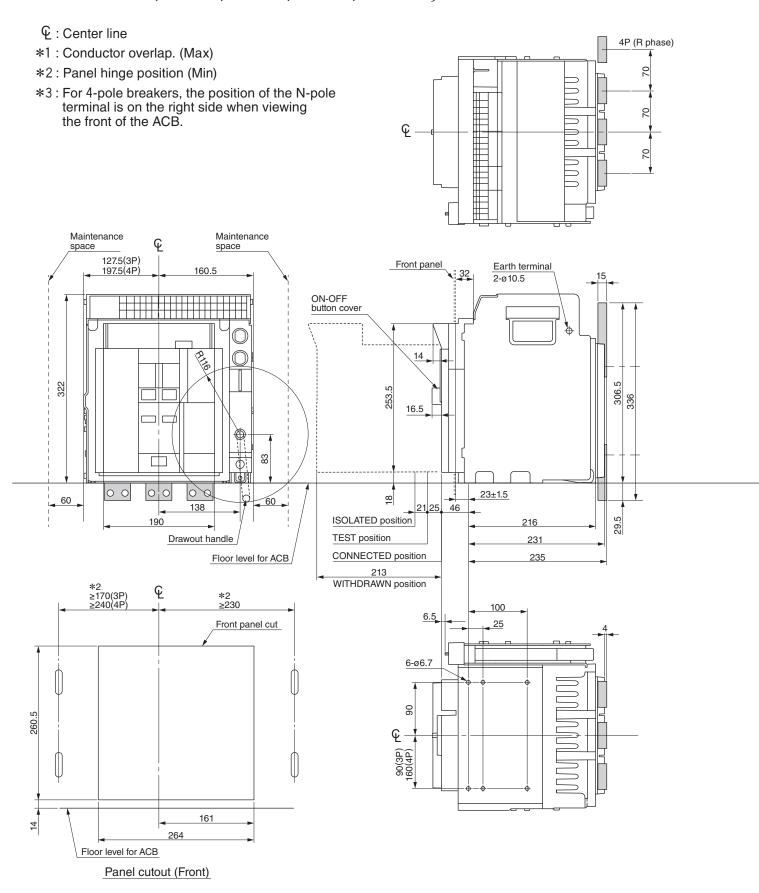


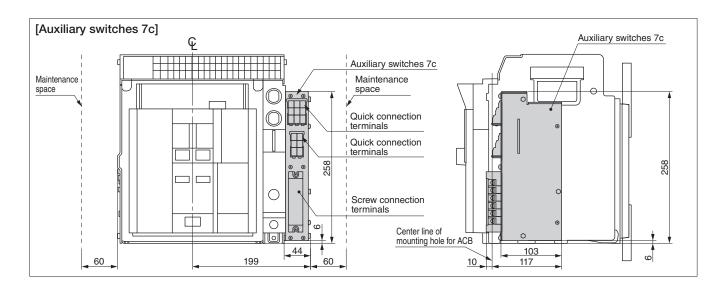

Panel cutout (Rear)

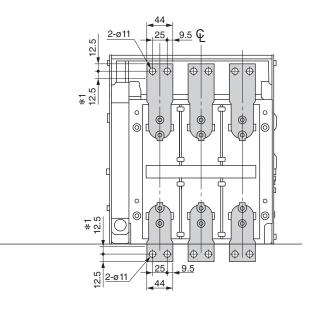


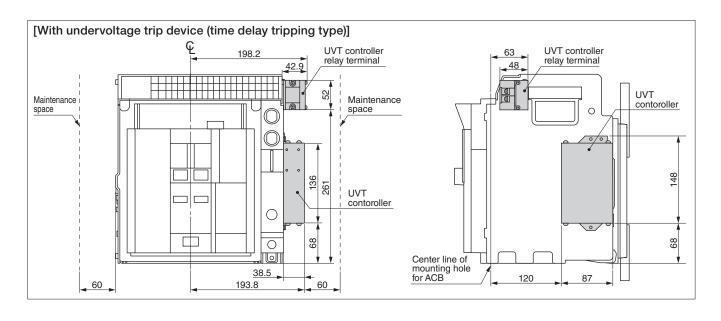
• Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D DRAW-OUT TYPE Horizontal terminals






Panel cutout (Rear)

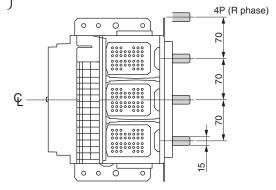


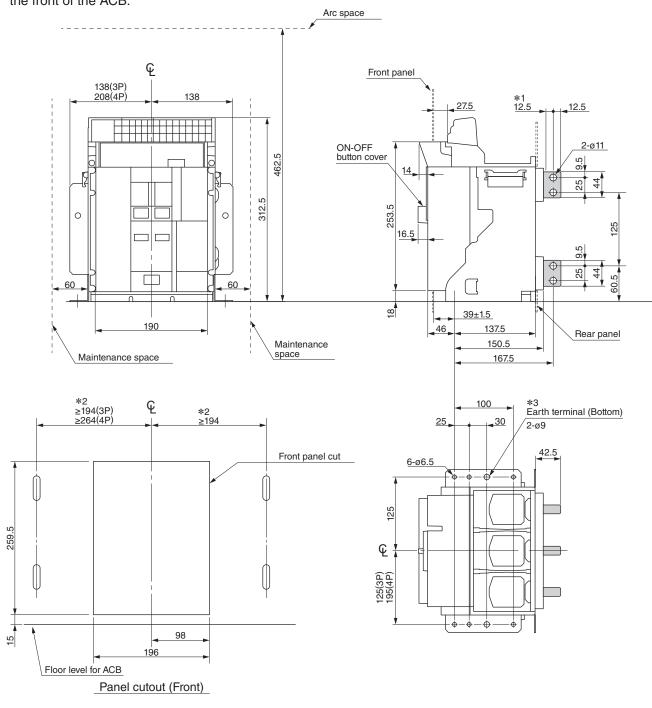

• Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D Front connections

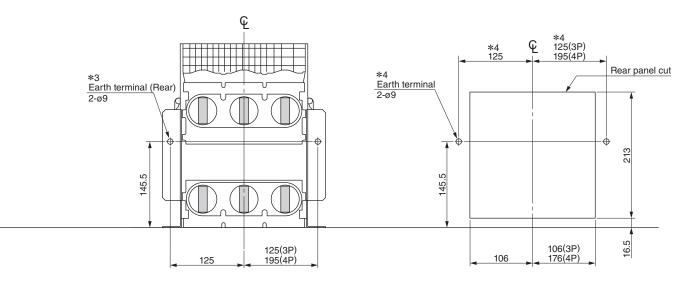
Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D

FIXED TYPE Vertical terminals

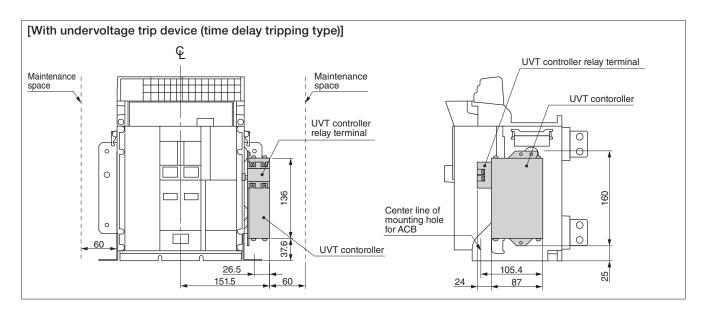
€ : Center line


*1 : Conductor overlap. (Max)


*2: Panel hinge position (Min)


*3: Only use an earth terminal on either the bottom or rear surfaces.

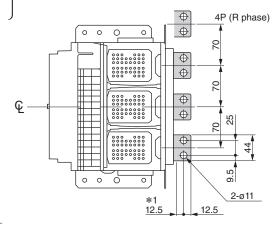
*4: To use an earth terminal (rear), a ø9 hole must be machined.


*5: For 4-pole breakers, the position of the N-pole terminal is on the right side when viewing the front of the ACB.

Panel cutout (Rear)

Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D

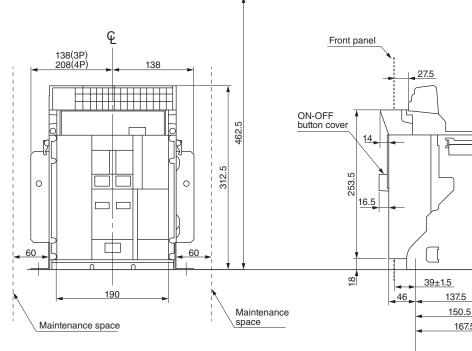
FIXED TYPE Horizontal terminals

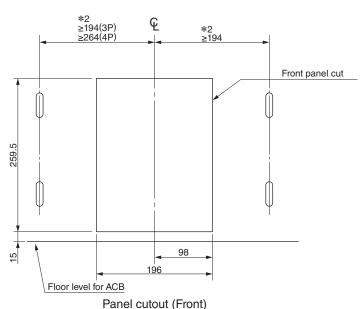

*1 : Conductor overlap. (Max)

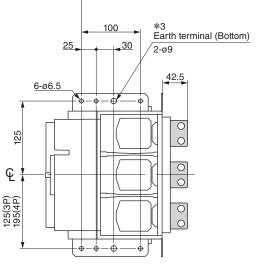
*2: Panel hinge position (Min)

*3: Only use an earth terminal on either the bottom or rear surfaces.

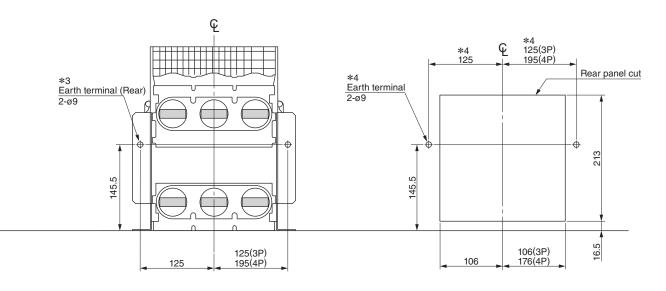
*4: To use an earth terminal (rear), a ø9 hole must be machined.

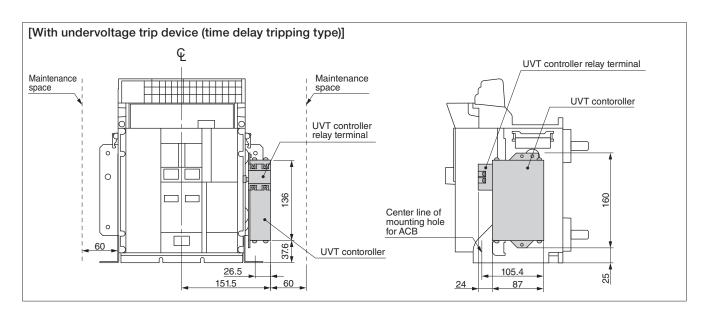

*5: For 4-pole breakers, the position of the N-pole terminal is on the right side when viewing the front of the ACB.


2


50

Rear panel


Arc space

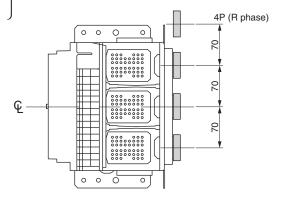


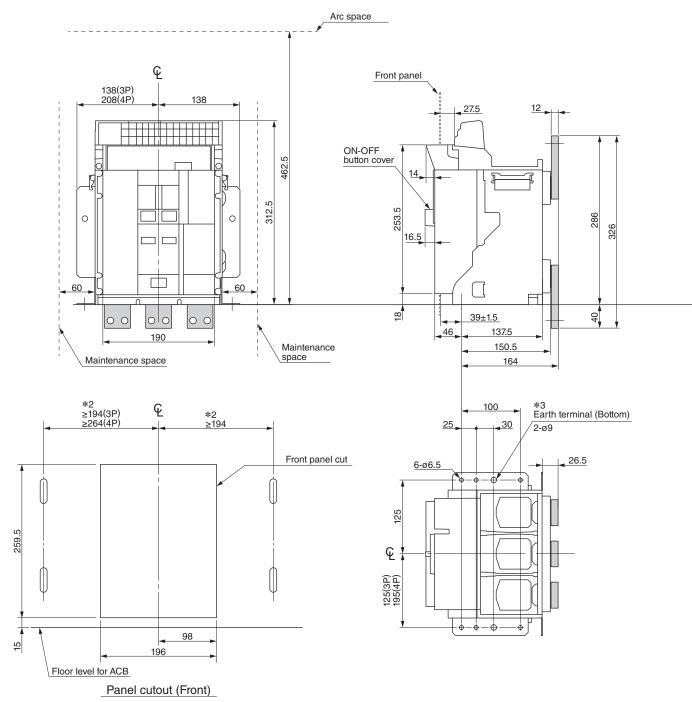
167.5

Panel cutout (Rear)

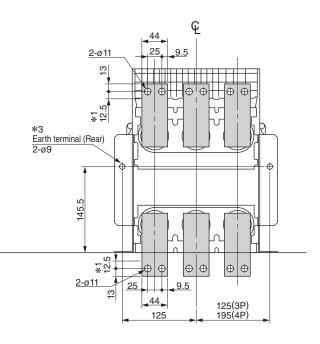
 Types AX106S, AX108S, AX110S, AX112S, AX116S, AX106H, AX108H, AX110H, AX112H, AX116H, AX106D, AX108D, AX110D, AX112D, AX116D

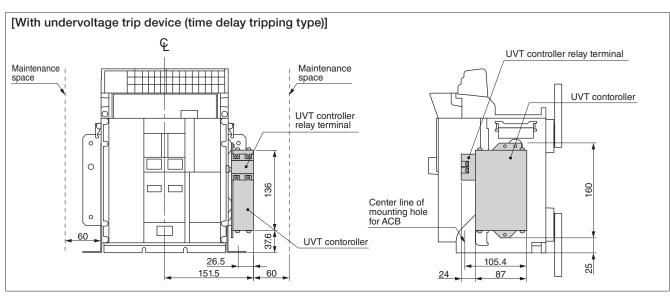
FIXED TYPE Front connections

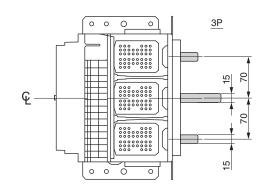

€ : Center line

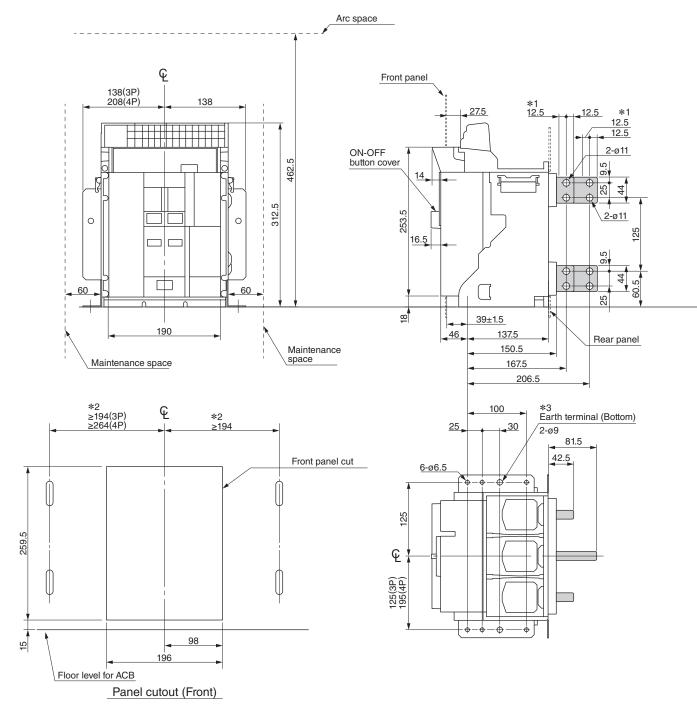

*1 : Conductor overlap. (Max)

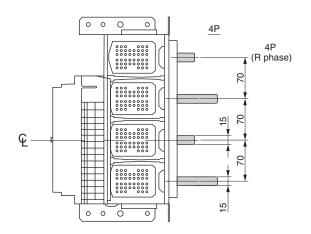
*2: Panel hinge position (Min)

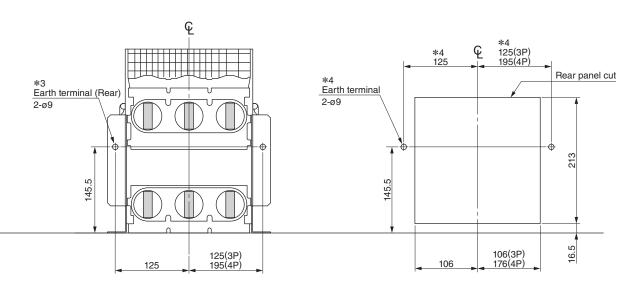

*3 : Only use an earth terminal on either the bottom or rear surfaces.

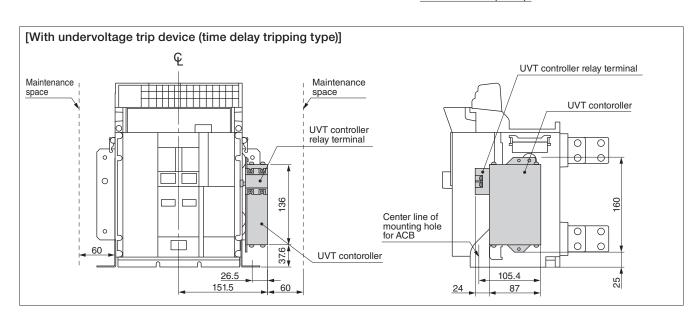

*4: For 4-pole breakers, the position of the N-pole terminal is on the right side when viewing the front of the ACB.

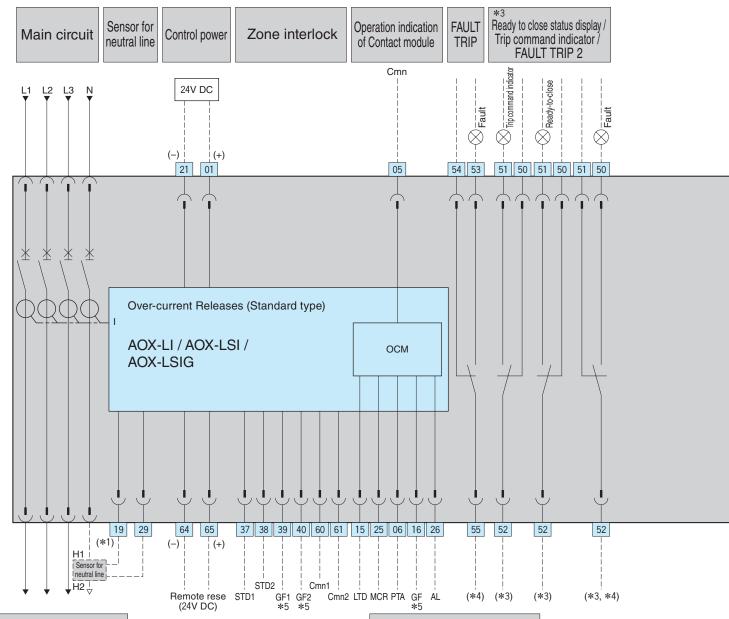





● Types AX120S, AX120H


- € : Center line
- *1 : Conductor overlap. (Max)
- *2: Panel hinge position (Min)
- *3: Only use an earth terminal on either the bottom or rear surfaces.
- *4: To use an earth terminal (rear), a ø9 hole must be machined.
- *5: For 4-pole breakers, the position of the N-pole terminal is on the right side when viewing the front of the ACB.





Panel cutout (Rear)

8

Circuit Diagram (AOX-LI, LSI, LSIG)

Terminal description

01(+) — 21(-) Control power 24V DC

05 — 15 Operation indication of Long time-delay trip

5 Short time-delay trip (ST) / Instantaneous trip (INST) / Making current release(MCR)

Operation indicaton of Instantaneous override tripping (IO) *6

05 — 06 Operation indication of Preferential trip alarm

05 — 16 Operation indication of Ground-fault trip ★ 5

05 — 26 Multi operation indication

(Trip alarm / Level of impact severe error)

Sensor for neutral line (Polarity: 19 - H1, 29 - H2)

65(+) — 64(−) Input for Remote reset (24V DC) *7

Input for Zone interlock (Short time delay)

38 — 61 Output for Zone interlock (Short time delay)

39 — 60 Input for Zone interlock (Ground fault) * 5

40 — 61 Output for Zone interlock (Ground fault) * 5

53 — 55 FAULT TRIP switch

51 — 52 Ready to close switch 50 — 52 Trip command indicate

Trip command indicator or FAULT TRIP switch 2

□ Under voltage trip device (Instantaneous trip type) or Continuously-rated shunt trip device 2

81(+) - 91(-) Under voltage trip device (Time delay trip type)

44(+) — 20(-) Continuously-rated shunt trip

27 — 22 Spring charge indicator

 $\underline{02}(+)$ — $\underline{22}(-)$ Motor charging operation circuit

43(+) - 07(-) Latch Release Coil (LRC)

Symbols for accessories

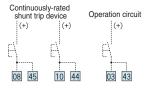
OCM : Contact module MOT : Charging motor

LRC : Latch release coil

SHT, SHT2: Continuously-rated shunt trip device

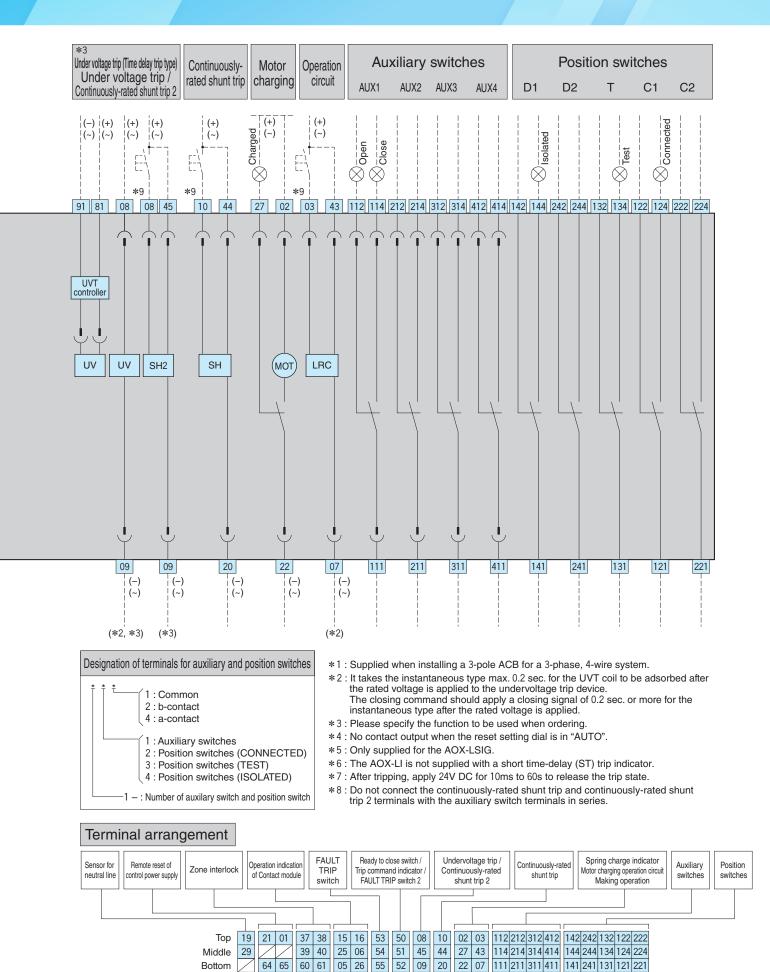
UVT : Undervoltage trip device

— Isolating terminal connector (Draw-out type)

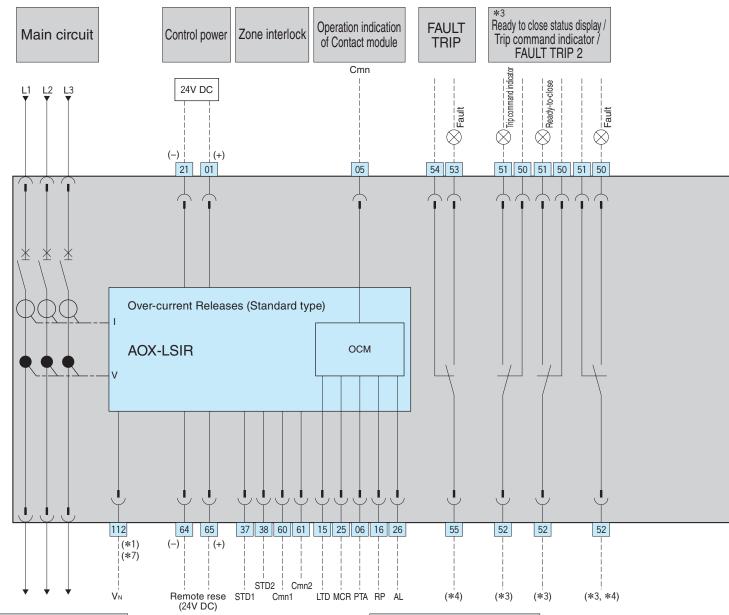

 ${\bf *9}$: Connecting continuously-rated shunt trip devices and operation circuits.

Ensure that the cables connecting the switch with terminals [3], [38] and [10] are 5 m or less in length, and keep them as far away as possible from power supply cables. If the cables exceed 5 m in length, or if using a AC380–480V rated voltage continuously-rated shunt trip device and latch release coil, use either of the following connection methods, as there is the risk of incorrect device operation caused by stray capacitance between cables.

Connect a relay near the ACB, and control the relay remotely.


2) Short-circuit the terminals as shown below.

Note that there will be an inrush current at the switch when using this connection method, so select a switch capable of handling the inrush current values in the table below.



Rated voltage (V)	Inrush current (A)	
AC/DC24-30	12	
AC/DC48-60	6	
AC/DC100-130	4	
AC/DC200-250	2	
AC380-480	1	

Circuit Diagram (AOX-LSIR)

Terminal description

01(+) — $21(-)$	Control power 24V DC
05 — 15	Operation indication of Lor
	01 11 11 (07) (1

ng time-delay trip Short time-delay trip (ST) / Instantaneous trip (INST) / Making current release(MCR) 05 -- 25 Operation indicaton of Instantaneous override tripping (IO)

05 - 06 Operation indication of Preferential trip alarm 05 — 16 Operation indication of Reverse power trip (RPT)

Multi operation indication 05 — 26

(Trip alarm / Level of impact severe error) Input for Remote reset (24V DC) *5

65(+) - 64(-) 37 — 60 Input for Zone interlock (Short time delay) 38 — 61 Output for Zone interlock (Short time delay)

FAULT TRIP switch 51 — 52 Ready to close switch

Trip command indicator or FAULT TRIP switch 2 50 — 52

08(+) - 09(-) Under voltage trip device (Instantaneous trip type) or Continuously-rated shunt trip device 2

81(+) — 91(-) Under voltage trip device (Time delay trip type)

44(+) - 20(-) Continuously-rated shunt trip 27 — 22 Spring charge indicator 02(+) - 22(-) Motor charging operation circuit

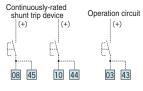
43(+) - 07(-) Latch Release Coil (LRC) Symbols for accessories

OCM : Contact module MOT : Charging motor **LRC** : Latch release coil

SHT, SHT2: Continuously-rated shunt trip device

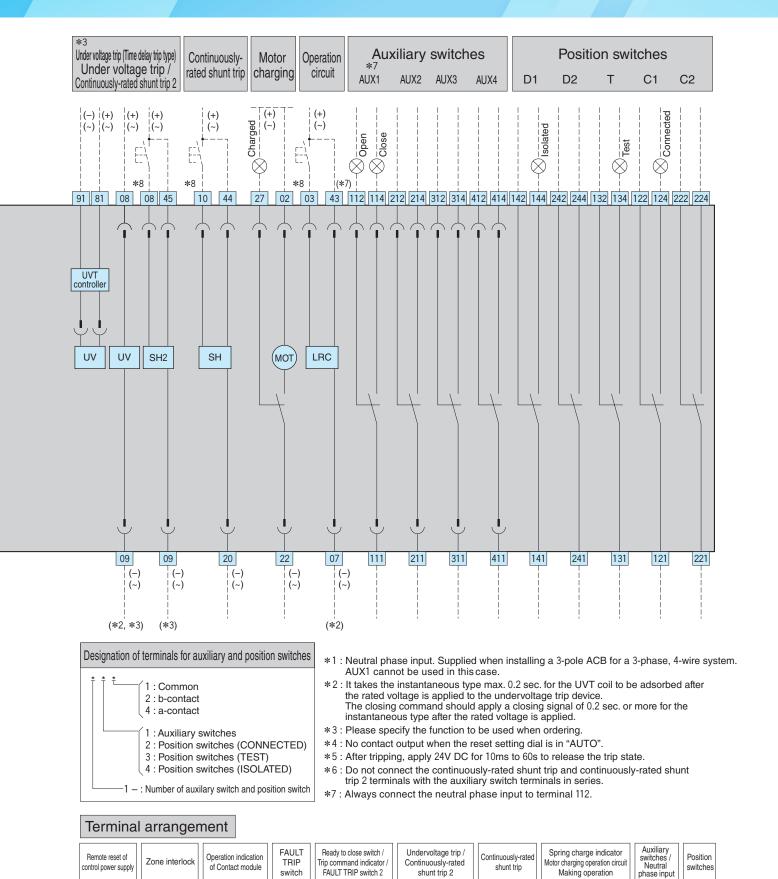
UVT : Undervoltage trip device

Isolating terminal connector (Draw-out type)


*8: Connecting continuously-rated shunt trip devices and operation circuits.

Ensure that the cables connecting the switch with terminals $\boxed{03}$, $\boxed{08}$ and $\boxed{10}$ are 5 m or less in length, and keep them as far away as possible from power supply cables. If the cables exceed 5 m in length, or if using a AC380-480V rated voltage continuously-rated shunt trip device and latch release coil, use either of the following connection methods, as there is the risk of incorrect device operation caused by stray capacitance between cables.

1) Connect a relay near the ACB, and control the relay remotely


2) Short-circuit the terminals as shown below.

Note that there will be an inrush current at the switch when using this connection method, so select a switch capable of handling the inrush current values in the table below

Inrush current (A)
12
6
4
2
1

Top

Bottom

21 01

38

39 40

60 61

15 16

25 06

05 26

53 50 08 10

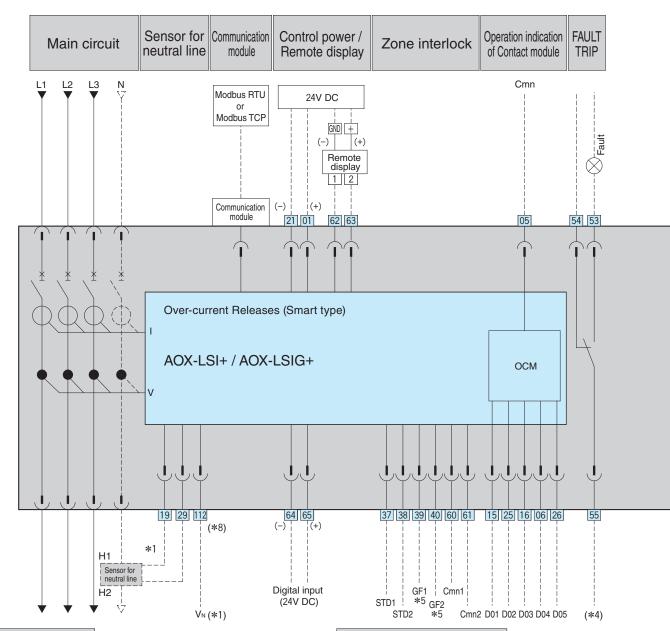
54 51

55

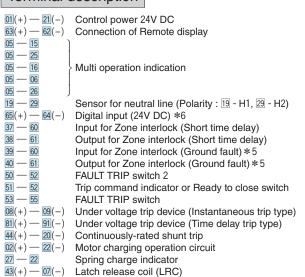
52 09 20

45

44


02 03

112 212 312 412 142 242 132 122 222

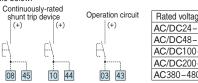

27 43 114 214 314 414 144 244 134 124 224

22 07 111 211 311 411 141 241 131 121 221

Circuit Diagram (AOX-LSI+, AOX-LSIG+)

Terminal description

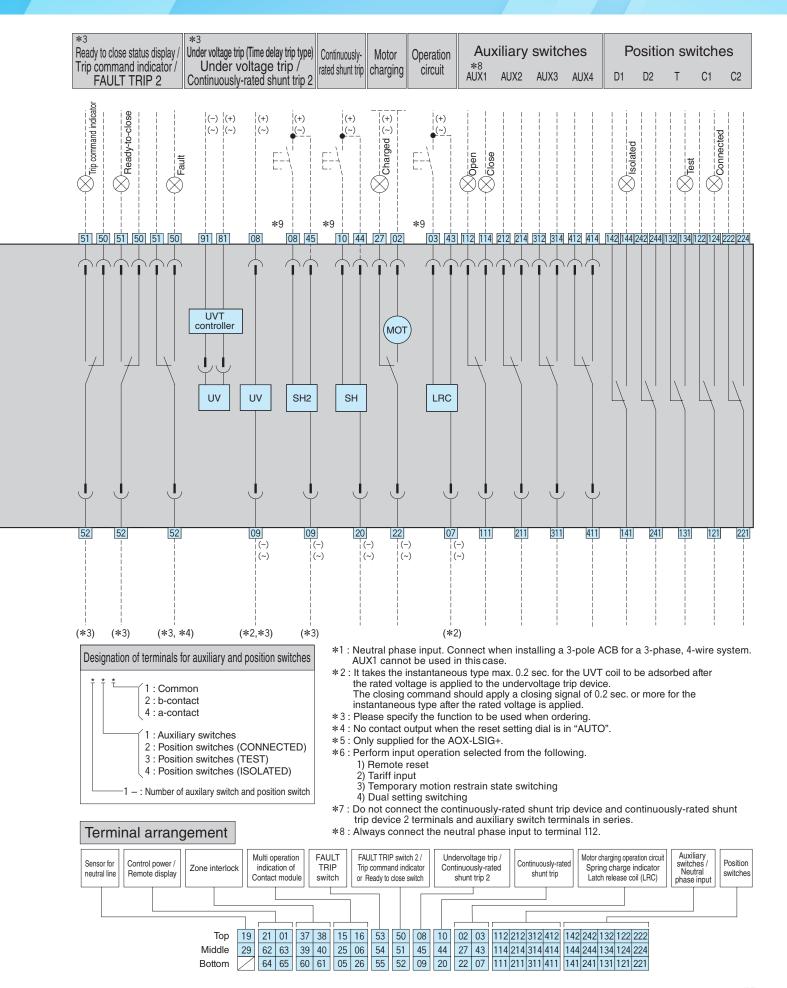
Symbols for accessories


OCM : Contact module SHT, SHT2 : Continuously-rated shunt trip device MOT : Charging motor UVT : Undervoltage trip device

LRC : Latch release coil —— Isolating terminal connector (Draw-out type)

*9: Connecting continuously-rated shunt trip devices and operation circuits. Ensure that the cables connecting the switch with terminals ©3, ©8 and 10 are 5 m or less in length, and keep them as far away as possible from power supply cables. If the cables exceed 5 m in length, or if using a AC380–480V rated voltage continuously-rated shunt trip device and latch release coil, use either of the following connection methods, as there is the risk of incorrect device operation caused by stray capacitance between cables.

Connect a relay near the ACB, and control the relay remotely.


2) Short-circuit the terminals as shown below. Note that there will be an inrush current at the switch when using this connection method, so select a switch capable of handling the inrush current values in the table below.

Rated voltage (V)	Inrush current (A)
AC/DC24-30	12
AC/DC48-60	6
AC/DC100-130	4
AC/DC200-250	2
AC380-480	1

Note: 1) If using a communication module and remote command module together with a product mounted with an over-current release, connection method 2) cannot be used. Note: 2) Contact TERASAKI if using the communication module + remote command module combination for a product mounted with an over-current release, in combination with an AC380-480V rated voltage continuously-rated shunt trip device and latch release coil (LRC).

Technical and Application Data

Dielectric strength

Circuit			Withstand voltage (limpulse withstand voltage $[U_{\rm imp}]$		
Main circ	uit		Between terminals, terminal group to earth	3500V AC	1 minute	12kV
	Over-current release (OCR)	Terminal group to earth	2000V AC	1 minute	1.5kV
	Zone interlock		Terminal group to earth	2000V AC	1 minute	1.5kV
	Operation indication of	f Contact module	Terminal group to earth	2000V AC	1 minute	1.5kV
	Remote reset		Terminal group to earth	2000V AC	1 minute	1.5kV
	Digital input		Terminal group to earth	2000V AC	1 minute	1.5kV
	LRC		Terminal group to earth	2500V AC	1 minute	6kV
	Continuously-rated sh	unt trip device	Terminal group to earth	2500V AC	1 minute	6kV
	Undervoltage trip device (Instantaneous trip type	e / Time-delay type)	Terminal group to earth	2500V AC	1 minute	6kV
Control	FAULT TRIP switch		Terminal group to earth	2500V AC	1 minute	6kV
circuits	Ready to close switch		Terminal group to earth	2500V AC	1 minute	6kV
	Trip command indicate	or	Terminal group to earth	2500V AC	1 minute	6kV
	Motor oborging	380-480V AC	Terminal group to earth	2500V AC	1 minute	6kV
	Motor charging	Other than above	Terminal group to earth	2000V AC	1 minute	4kV
	Spring charge indicator		Terminal group to earth	2000V AC	1 minute	4kV
	Auxiliary switches 4c		Terminal group to earth	2500V AC	1 minute	8kV
	Position switches		Terminal group to earth	2500V AC	1 minute	8kV
	Neutral phase input		Terminal group to earth	2500V AC	1 minute	8kV
	Auxiliany awitahaa 7a	Quick connection terminal	Terminal group to earth	2500V AC	1 minute	4kV
	Auxiliary switches 7c	Screw connection terminal	Terminal group to earth	2500V AC	1 minute	6kV

Internal resistance and Power consumption

	Туре	Terminal arrangements	DC internal resistance (mΩ)	Power consumption (W) (Values for 3 poles)
	AX106S	Horizontal terminals	0.039	91
	AX106H	Vertical terminals	0.039	74
	AX106D	Front connections	0.039	99
	AX108S	Horizontal terminals	0.039	127
	AX108H	Vertical terminals	0.039	120
	AX108D	Front connections	0.039	139
	AX110S	Horizontal terminals	0.039	196
DRAW-OUT	AX110H	Vertical terminals	0.039	176
TYPE	AX110D	Front connections	0.039	194
	AX112S	Horizontal terminals	0.039	318
	AX112H	Vertical terminals	0.039	266
	AX112D	Front connections	0.039	308
	43/1100	Llavina stal tavesis ala	0.030	335 ③
	AX116S	Horizontal terminals	0.039	502 ④
AX116	AX116H AX116D	Vertical terminals	0.039	441
	AXIIOD	Front connections	0.039	502
	AX106S	Horizontal terminals	0.024	58
	AX106H	Vertical terminals	0.024	49
	AX106D	Front connections	0.024	66
	AX108S	Horizontal terminals	0.024	100
	AX108H	Vertical terminals	0.024	75
	AX108D	Front connections	0.024	100
[AX110S	Horizontal terminals	0.024	143
	AX110H	Vertical terminals	0.024	107
FIXED TYPE	AX110D	Front connections	0.024	148
	AX112S	Horizontal terminals	0.024	185
	AX112H	Vertical terminals	0.024	180
	AX112D	Front connections	0.024	226
	AX116S	Horizontal terminals	0.024	318
	AX116H	Vertical terminals	0.024	185
	AX116D	Front connections	0.024	329
	AX120S AX120H	Vertical terminals	0.024	297

The resistance is a general reference value. It can not be used for inspections when receiving goods.
 The power consumptions are calculated on the basis of the DC internal resistance.
 Value when connecting three 80 mm wide, 5 mm thick bus bars.
 Value when connecting two 100 mm wide, 5 mm thick bus bars.

Derating ①

[DRAW-OUT TYPE]

				AX106S	AX108S	AX110S	AX112S	AX1	16S
		Тур	е	AX106H	AX108H	AX110H	AX112H	AX1	16H
Based	Ambient			AX106D	AX108D	AX110D	AX112D	AX1	16D
Standards	temperature (°C)	Connecting	Sizes	W : 40mm, T : 5mm	W : 50mm, T : 5mm	W : 60mm, T : 5mm	W : 80mm, T : 5mm	W : 100mm, T : 5mm	W : 80mm, T : 5mm
		bar	Qty.	2 pcs	3 pcs				
		Terminal arra	ngements			Available of	current [A]		
JIS C 8201-2-1	40	Horizontal to	erminals	630	800	1000	1250	1560	1600
Ann-1, Ann-2	(Standard ambient	Vertical te	rminals	630	800	1000	1250	1600	_
IEC60947-2 EN60947-2	temperature)	Front connections		630	800	1000	1250	1600	_
AS/NZS		Horizontal terminals		630	800	1000	1250	1490	1540
IEC60947-2	45	Vertical terminals		630	800	1000	1250	1600	_
		Front connections		630	800	1000	1250	1600	_
(4)		Horizontal to	erminals	630	800	1000	1250	1420	1470
JIS C 8201-3	50	Vertical terminals		630	800	1000	1250	1600	_
IEC60947-3		Front conn	ections	630	800	1000	1250	1600	_
		Horizontal to	erminals	630	800	1000	1240	1340	1390
	55	Vertical te	rminals	630	800	1000	1250	1540	_
		Front conn	ections	630	800	1000	1250	1580	_
		Horizontal to	erminals	630	800	1000	1170	1270	1310
	60	Vertical te	rminals	630	800	1000	1250	1460	_
			ections	630	800	1000	1250	1500	_

[FIXED TYPE]

[. 10, ED E]									
				AX106S	AX108S	AX110S	AX112S	AX116S	AX120S
		Тур	е	AX106H	AX108H	AX110H	AX112H	AX116H	AX120H
Danad	Ambient			AX106D	AX108D	AX110D	AX112D	AX116D	_
Based Standards	temperature (°C)	Connecting	Sizes	W : 40mm, T : 5mm	W : 50mm, T : 5mm	W : 60mm, T : 5mm	W : 80mm, T : 5mm	W : 100mm, T : 5mm	W : 100mm, T : 5mm
		Dai	Qty.	2 pcs	3 pcs				
		Terminal arra	ngements			Available	current [A]		
JIS C 8201-2-1	40	Horizontal to	erminals	630	800	1000	1250	1600	_
Ann-1, Ann-2	(Standard ambient	Vertical te	rminals	630	800	1000	1250	1600	2000
IEC60947-2 EN60947-2	temperature)	Front connections		630	800	1000	1250	1600	_
AS/NZS		Horizontal terminals		630	800	1000	1250	1600	_
IEC60947-2	45	Vertical terminals		630	800	1000	1250	1600	2000
		Front connections		630	800	1000	1250	1600	_
④ JIS C 8201-3		Horizontal to	erminals	630	800	1000	1250	1550	_
IEC60947-3	50	Vertical terminals		630	800	1000	1250	1600	2000
		Front conn	ections	630	800	1000	1250	1600	_
		Horizontal to	erminals	630	800	1000	1250	1480	_
	55	Vertical te	rminals	630	800	1000	1250	1600	1900
		Front conn	ections	630	800	1000	1250	1530	_
		Horizontal to	erminals	630	800	1000	1250	1400	_
	60	Vertical te	rminals	630	800	1000	1250	1600	1800
		Front conn	ections	630	800	1000	1250	1450	_

① : Can be used with fixed type and draw-out type ACBs.

②: If the upper terminal and lower terminal types differ, contact TERASAKI for the available current value.

③: Actual value of conductor size (cross-section area) in accordance with IEC60947 at ambient temperature 40°C and in open air. The values above differ depending on the structure of the switchboard.

④: Applicable standards for AX106D, AX108D, AX110D, AX112D, and AX116D.

Standard type for general feeder circuit (AOX-LI, AOX-LSI, AOX-LSIG)

Compamy name :			Order	number:					
Quantity / Delivery time request		Units	Year	ı	Month	Date			
Enter your choice in the boxes p	provided								
1 Type	□AX106S □AX106H	□AX108S □AX108H	□AX110S □AX110H	□AX112S □AX112H	□AX116S □AX116H	□AX120S □AX120H			
2 Number of poles	□3-poles	☐4-poles							
3 Applicable main circuit voltage / Frequency		_V AC		_Hz	□3-phase 3-w	ire □3-ph	nase 4-wire		
Applicable standard / Standard ambient temperature	Applicable sta	andard ☐45°C							
5 Types of Mounting	☐Fixed type								
	□ Draw-out type □ Standard drawout handle units □ Mal-insertion prevention device *3 □ Storage drawout handle units □ Position switches Type ALX- □ Main circuit safety shutters ALX- □ Control circuit terminal cover □ Test jumper * 22 □ Key lock on withdrawn position (Max. 2 can be installed) units □ Silinder □ KLS (□ CSM1Z-E22M □ CSM1Z-E22MA) □ RONIS (□ 1351 □ 1351-1) □ Proflux □ KIRK □ Racking interlock * 2 * 20								
	□ Door interlock * 1 * 2 (Hinge position of distribution board door : □ Right side □ Left side) Line side : □ Horizontal terminals * 3 □ Vertical terminals □ Front connections * 3 □ Conductive adapter (AZX-1) * 8 Load side : □ Horizontal terminals * 3 □ Vertical terminals □ Front connections * 3 □ Conductive adapter (AZX-1) * 8								
6 Operation method	☐Motor char	lease coil Op rging Operation	erational volta onal voltage _ erational volta	V AC,	V DC	/ DC / DC			
7 Over-current Releases	□AOX-LI	□AOX-LSI		-			☐Contact module		
(OCR) *16	/ _n :A		ower : 24V DC		ical reset : \Box	AUTO 🗆	MANUAL		
		1 :s	I _r 2 : _			$\langle (I_r 2) \times (I_n) \rangle$ ay at $I_r \times 600\%$	Default setting values I _r 1:1/I _r 2:1 COLD		
			ngs (Only for I) DON D	OFF	Default setting values		
	$[I_{sd}](A)$ I_{s} $[t_{sd}]$ (ms) t_{s}	sd:×	$I_{n}(A)$, <u> </u>	011	6 400		
	Ramp charac			FF .			OFF		
	Zone interloc						OFF		
	Instantaneou $[I_i](A)$ I_i	s trip settings		OFF			Default setting values 12 (for AX120S, AX120H) 16 (Except for above)		
	Preferential tr		ings \square ON	□OFF * 21					
	Default setting v		d\			٥٢	T (Onele O phone O wire)		
		$f_r \times 80\% \text{(fix)}$ $f_r \times 50\% \text{(fix)}$ $f_r \times 50\% \text{(fix)}$				UF	FF (3pole, 3-phase, 3-wire) 1 (Except for above)		
	Neutral prote			OFF			Default setting values		
		N:×/							
			elay settings for			me delay trip.	_		
	Ground fault			or LSIG) 🔲	ON OFF		Default setting values		
	0 0	j:× j:ms					0.2 300		
	Ramp charac			=F			OFF		
	Zone interloc						OFF		
							(Continued on D.70		

78 (Continued on P.)

8 Trip Devices	Continuously-rated shunt trip		V AC,	V DC	☐Capacitor trip device	
	Continuously-rated shunt trip		_V AC,	V DC *		
	Undervoltage trip device (Inst			V AC,	V DC	
	☐Undervoltage trip device (Tim	ne delay trip type	e) *17	V AC, _	V DC	
9 Other Accessories	☐Auxiliary switches 4c		General	☐Micro loa	ad	
	☐Auxiliary switches 7c *4 *5 *	:17 * 18 □	General			
	□ON–OFF Cycle Counter					
	☐Inter-pole barrier *3 *6					
	☐OFF padlock lever *8					
	☐Key lock (Lock-in OFF type) *	9				
	☐Silinder ☐KLS (☐CSM1Z-I	E22M □CSM1Z	Z-E22MA)			
	□RONIS (□1351 □1351-1)	□Proflux □KIF	₹K			
	☐Mechanical interlock *10 *17	*18				
	(Pitch between ACBs ☐600m	nm □700mm [800mm]900mm)		
	☐Ready to close switch *11					
	☐FAULT TRIP switch					
	☐FAULT TRIP switch 2 *12					
	□Trip command indicator *13					
	☐Sensor for neutral line *19					
	☐IP cover *14 *17					
	□Door flange *15 *17					
	□IP20 □IP31					
10 Special environments	Unnecessary					
*22	☐Tropicalization (Fungus and moistur	re treatment) \Box C	old climate tre	atment \square Ar	nti-corrosion treatment	
11 Spare parts	□Unnecessary □Necessary	(Contact TERAS	AKI for parts	s)		
12 Test report	□Japanese □English	copies				
13 Others	□OCR checker					
	combination with a door flange, IP dervoltage trip device (Time delay	*13 : Cannot b switch2.	e fitted with F	Ready to close	switch or FAULT TRIP	
trip type), or mechanical inter	flock.	*14 : Cannot b	e fitted with d	loor flange.		
*2: When using a door interlock,	always use a racking interlock.	*15 : Door flan	ge can notbe	fitted IP cove	r.	
*3: Cannot be used for AX120S a	and AX120H.	*16 : For detail	s Is about each	setting, pleas	se refer to P.25 to P.27.	
*4: Cannot be fitted with mechan	nical interlock or auxiliary switch 4c.	*17 : Contact TERASAKI to use in combination with a door interlock.				
*5: Working mechanism differs for switches work only on the co		*18 : Contact TERASAKI to use in combination with a racking interlock.				
*6: Cannot be fitted with Draw-or specifications or conductive a	· ·			pole ACB for	3-phase 4-wire power	
*7: Conductive adapter can not be	pe fitted with Inter-pole barrier.			use in combin	nation with a mechanical	
·	e fitted with Key lock (Lock in OFF).		or auxiliary sv		adon with a moonarilear	
*9: Key lock (Lock in OFF) cannot	ot be fitted with OFF padlock.	*21 : Details of	settings spe	cified in this s	ection cannot be changed	
*10 : Cannot be fitted with auxilia	ry switch 7c.	by custor	ners.		-	
*11 : Cannot be fitted with Trip co	•	*22 : Can not b	e fitted with l	Undervoltage	trip devices.	
cwitch?		* 23 · Coming of	oon			

*12: Cannot be fitted with Ready to close switch or Trip command

Standard type for generator protection (AOX-LSIR)

Compamy name :		Orde	er number :		
Quantity / Delivery time request	Unit	s Yea	.rM	onth	Date
Enter your choice in the boxes	provided				
1 Type		X108S □AX1109 X108H □AX110		□AX116S □AX116H	
2 Number of poles	☐3-poles				
3 Applicable main circuit voltage / Frequency	V A0	<u> </u>	Hz	3-phase 3-wire	☐3-phase 4-wire
4 Applicable standard / Standard ambient temperature	Applicable standa ☐40°C ☐45				
5 Types of Mounting	☐Fixed type				
	□SI □M □CI □KI ⇒□ □RI	tandard drawout han torage drawout han ain circuit safety shontrol circuit termina ey lock on withdraw Silinder KLS (RONIS (1351 acking interlock *1*2	dleunits utters al cover n position (Max. CSM1Z-E22M 1351-1) Prof	□Position swi □Test jumper 2 can be installed □CSM1Z-E22M flux □KIRK	d)units A)
	□Cor Load side : □Hor □Cor	izontal terminals [nductive adapter (Azizontal terminals [nductive adapter (Azizontal terminals]	ZX-1) * 6 □Vertical termina		
6 Operation method	☐Motor charging	g e coil Operational vo Operational voltage e coil Operational vo	eV AC,	V DC	
7 Over-current Releases (OCR) *15	Long time-delay to $[I_r](A)$ $I_r1:$ $[t_r](A)$ $I_r1:$ $[t_r](S)$ $I_r:$ $[t_r](A)$ $I_p:$ $[t_r](A)$ $I_p:$ $[t_r](A)$	s (Time-delating Settings \square ON $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	□ON □OFF : y at $I_r \times 120\%$) □OFF OFF □OFF N □OFF * 20 n □ON □OF y at $P_{rp} \times 100\%$) I-time power supp	P _n :(k\	Default setting values 2.75 200 OFF Default setting values 16 Default setting values 95% 50% Default setting values

*21 : Can not be fitted with Undervoltage trip devices.

by customers.

*22 : Coming soon.

8 Trip Devices	Continuously-rated shunt trip deviceV AC,V DC								
	☐Continuously-rated shunt trip device 2V AC,V DC *21								
	Undervoltage trip device (Instantaneous trip type)V AC,V DC								
	☐Undervoltage trip device (Tim	e delay trip type) *16 _	V AC,	V DC					
9 Other Accessories	☐Auxiliary switches 4c	□General	☐Micro load	t					
	☐Auxiliary switches 7c *3 *4 *	17 * 18 ☐General							
	☐ON–OFF Cycle Counter								
	□Inter-pole barrier *5								
	☐OFF padlock lever *7								
	☐Key lock (Lock-in OFF type) *								
	☐Silinder ☐KLS (☐CSM1Z-E								
	\square RONIS (\square 1351 \square 1351-1) \square Proflux \square KIRK								
	☐Mechanical interlock *9 *16 *17								
	(Pitch between ACBs ☐600m	m □/00mm □800mm	∐900mm)						
	Ready to close switch *10								
	□FAULT TRIP switch □FAULT TRIP switch 2 * 11 □Trip command indicator * 12 □Sensor for neutral line * 18 □IP cover * 13 * 16								
	□Door flange *14 *16								
10 Special environments	Unnecessary								
*22	☐ Tropicalization (Fungus and moistur	e treatment) Cold climate	treatment Anti-	-corrosion treatment					
11 Spare parts		ry (Contact TERASAKI for							
12 Test report	□Japanese □English	copies	<u> </u>						
13 Others	□OCR checker								
	combination with a door flange, IP	*12 : Cannot be fitted with	h Poody to close (Switch or EALILT TOID					
	dervoltage trip device (Time delay	switch2.	Tricady to close s	SWIGH OF FACET THIS					
trip type), or mechanical inter		*13 : Cannot be fitted with	n door flange.						
$*2$: When using a door interlock,	always use a racking interlock.	*14 : Door flange can not	_						
*3: Cannot be fitted with mechan	ical interlock or auxiliary switch 4c.	*15 : For details about ea		refer to P.28.					
*4: Working mechanism differs fi		*16 : Contact TERASAKI to use in combination with a door interlock.							
switches work only on the co		*17 : Contact TERASAKI	to use in combina	ation with a racking					
*5 : Cannot be fitted with Draw-or		interlock.		3					
specifications or conductive a *6: Conductive adapter can not b	•	*18 : Select this if using a 3-pole ACB for 3-phase 4-wire power							
·	e fitted with Key lock (Lock in OFF).	distribution.	to use in combine	ation with a machanical					
*8 : Key lock (Lock in OFF) cannot		*19 : Contact TERASAKI to use in combination with a mechanical interlock or auxiliary switch 7c.							

*9: Cannot be fitted with auxiliary switch 7c.

indicator.

*10 : Cannot be fitted with Trip command indicator or FAULT TRIP

*11: Cannot be fitted with Ready to close switch or Trip command

Smart type (AOX-LSI+, AOX-LSIG+)

Compamy name :	Order number :								
Quantity / Delivery time request		Units	Year _		Month	Date			
Enter your choice in the boxes prov	vided								
1 Type	□AX106S □AX106H	□AX108S □AX108H	□AX110S □AX110H	□AX112S □AX112H	□AX116S □AX116H				
2 Number of poles	☐3-poles	☐4-poles							
3 Applicable main circuit voltage / Frequency		_V AC		_Hz	3-phase 3-wire	□3-phase 4	-wire		
4 Applicable standard / Standard ambient temperature	Applicable sta ☐40°C	andard □45℃							
5 Types of Mounting	☐Fixed type								
	□ Draw-out type □ Standard drawout handleunits □ Mal-insertion prevention device □ Storage drawout handleunits □ Position switches Type ALXPA □ Main circuit safety shutters □ Control circuit terminal cover □ Body sensor *18 □ Test jumper *24 □ Key lock on withdrawn position (Max. 2 can be installed)units □ Silinder □ KLS (□ CSM1Z-E22M □ CSM1Z-E22MA) □ RONIS (□ 1351 □ 1351-1) □ Proflux □ KIRK □ Racking interlock *2 □ Door interlock *1 *2 (Hinge position of distribution board door: □ Right side □ Left side) Line side: □ Horizontal terminals □ Vertical terminals □ Front connections □ Conductive adapter (AZX-1) *7								
	Load side : Ho	rizontal terminals		inals Front o	connections C	conductive adapter (AZ	ZX-1) * 7		
6 Operation method	☐Motor char ☐Latch rel	ease coil Ope ging Operatior ease coil Ope	nal voltage rational voltage	V AC,	V DC				
7 Over-current Releases		□AOX-LSIG		. □ON □O	EE		☐Contact module		
(OCR) *16	Long time-delay trip set $[t_r](A)$ (Setti $[t_r](S)$ (Setti Switching of stat Characteristic switching Short time-delay trip set $[t_{sol}](A)$ (Setti $[t_{sol}](A)$ (Setti $[t_{sol}](A)$ (Setti $[t_{sol}](A)$ (Setti $[t_{sol}](A)$ (Setti $[t_{sol}](A)$ (Setti Neutral protection $[t_N](A)$). Link Ground fault protection $[t_N](A)$ (Setti $[t_{gl}](A)$). $[t_{gl}](A)$ / $[t_{gl}](A)$	$_{r}$ ng A) $_{r}$: $_{r}$ ng A) $_{r}$: $_{r}$ ng A) $_{r}$: $_{r}$ rting characteristic: (Setting A) $_{r}$ Thin $_{r}$ posettings (Setting ng A) $_{r}$ so the settings (Setting Settings (Setting Settings) $_{r}$ to the time-delay ction settings (Settings) $_{r}$ to the time-delay ction settings (Setting A) $_{r}$ so the settings $_{r}$ so the settings $_{r}$ (Set Settings) $_{r}$ so the setting $_{r}$	$GA) \bigcirc ON \bigcirc OFF/(Q) \times I_n(A)$ S $C: (Setting A) \bigcirc Q$ S	Setting B) ON COLD HOT (EI) HO	□OFF *Select (Setting B) I_r : (Setting B) I_r	$N_{\rm n}(A)$ $N_{\rm s}$ $N_{\rm n}(A)$ $N_{\rm s}$ $N_{\rm n}(A)$ $N_{\rm s}$ $N_{\rm n}(A)$	s is ON. Default setting values 1.0 10 COLD t(EI)		
	☐Fixed type	ae □Slide ty _l	pe □Sync	type			Fixed type		
	Demand time	e nins (can be se	et from 1 min to	o 60 mins in 1	-minute increm	nents)	30 minutes		
	* Cannot be	set if "Sync ty	pe is selected	for demand i	mode.		/O !! ! = ===		

7 Over-current Releases (OCR) *16	Settings for Under voltage protection $[U_{uv}](V)$ $U_{uv}: \V$	1	Default setting values 100 10			
	$[t_{uv}](s)$ $t_{uv}:$ s Working mode: \BoxTRIP \BoxALARM	I □OFF	OFF			
	Settings for Over voltage protection		Default setting values			
	$[U_{\text{ov}}](V)$ $U_{\text{ov}}: \underline{\qquad} V$		725			
	$[t_{ov}](s)$ t_{ov} :s Working mode: $\Box TRIP$ $\Box ALARM$	I □OFF	10 OFF			
	Settings for Under frequency protec		Default setting values			
	$[F_{uf}](Hz)$ $F_{uf}:$ Hz		45 10			
	$[t_{\text{uf}}](s)$ $t_{\text{uf}}:$ s Working mode: $\Box TRIP$ $\Box ALARM$	I □OFF	OFF			
	Settings for Over frequency protection		Default setting values			
	$[F_{\text{of}}](Hz)$ $F_{\text{of}}:$ Hz		65			
	$[t_{\text{of}}](s)$ $t_{\text{of}}:$ s Working mode: $\Box TRIP$ $\Box ALARM$	I DOEE	10 OFF			
	Settings for Reverse power protection		Default setting values			
	$[P_{rp}](kW)$ $P_{rp}: \underline{\qquad} \times P_{n}(kW)$	<i>P</i> _n :(kW)	4%			
	$[t_{rp}](s)$ $t_{rp}:$ s		5			
	Working mode : □TRIP □ALARM Settings for Unbalance current prote		OFF Default setting values			
	[/ _{unbc}](%) / _{unbc} :%	oction .	50			
	$[t_{unbc}](s)$ t_{unbc} :s		10			
	Working mode : ☐TRIP ☐ALARM Settings for Unbalance voltage prote		OFF Default setting values			
	$[U_{\text{unbv}}]$ (%) U_{unbv} :%	36ti011	30			
	[t _{unbv}](s)		10			
	Working mode : TRIP ALARM		OFF			
	Settings for Contact temperature more $T_{\text{oh}}(^{\circ}C)$ $T_{\text{oh}}:$ $^{\circ}C$		Default setting values 155			
	Working mode : □ALARM □OFF	C)FF			
8 Trip Devices	Continuously-rated shunt trip devi		Capacitor trip device			
	☐ Continuously-rated shunt trip devi ☐ Undervoltage trip device (Instanta					
	☐Undervoltage trip device (Time de	1 71 7				
9 Other Accessories	Auxiliary switches 4c	☐General ☐Micro load				
	□ Auxiliary switches 7c *4 *5 *17 *19 □ General					
	□ON–OFF Cycle Counter □Inter-pole barrier *3 *6 □OFF padlock lever *8					
	☐ Key lock (Lock-in OFF type) *9					
	□Silinder □KLS (□CSM1Z-E22M □CSM1Z-E22MA)					
	□RONIS (□1351 □1351-1) □Proflux □KIRK □Mechanical interlock *10 *17 *19					
	(Pitch between ACBs \[\Beta 600mm \] \[\Beta 700mm \] \[\Beta 800mm \] \[\Beta 900mm \]					
	Ready to close switch *12					
	FAULT TRIP switch FAULT TRIP switch 2 * 12					
	☐Trip command indicator *13 ☐IP cover *14 *17 ☐Sensor for neutral line *20 ☐Door flange *15 *17					
10 Special environments	Unnecessary					
* 23	Tropicalization (Fungus and mois	ture treatment)	ti-corrosion treatment			
11 Spare parts	☐Unnecessary ☐Necessary (C	ontact TERASAKI for parts)				
12 Test report		copies				
13 Others	□ Lifter □ Communication module □ OCR checker □ Built-in batter		r remote display			
*1 : Contact TERASAKI to use in col	mbination with a door flange, IP cover,	*12 : Cannot be fitted with Ready to close switch of	or Trip command			
auxiliary switch 7c, undervoltage	e trip device (Time delay trip type), or	indicator.				
mechanical interlock.	vovo ugo o rogkina interlect	*13 : Cannot be fitted with Ready to close switch o	or Fault trip switch2.			
*2: When using a door interlock, always use a racking interlock. *3: Thi (L characteristic): Time settings at (I _r)×600%		*14 : Cannot be fitted with door flange.				
Other characteristic: Time settings at $(t_r) \times 300\%$		*15 : Door flange can notbe fitted IP cover.*16 : For details about each setting, please refer to	P.29 and P.30.			
*4 : Cannot be fitted with mechanical interlock or auxiliary switch 4c.		- · · · · · · · · · · · · · · · · · · ·	*17 : Contact TERASAKI to use in combination with a door interlock.			
*5: Working mechanism differs from auxiliary switch 4c, these switches		*18 : To use a body sensor, always also use a cor				
work only on the connected position. *6: Cannot be fitted with Draw-out type front connection specifications or		*19: Contact TERASAKI to use in combination wit	-			
conductive adapter.		*20 : Select this if using a 3-pole ACB for 3-phase 4 *21 : Cannot be used for fixed types.	+-wire power distribution.			
*7 : Conductive adapter can not be fitted with Inter-pole barrier. *8 : OFF padlock lever can not be fitted with Key lock (Lock in OFF).		*22 : Contact TERASAKI to use in combination with	th a mechanical			
*9: Key lock (Lock in OFF) cannot be		interlock or auxiliary switch 7c.				
*10 : Cannot be fitted with auxiliary s		*23 : Can not be fitted with Undervoltage trip device	ces.			
at 11 . One was the flat of with Table and	mand indicator or Fault trin awitch?	*24 : Coming soon.				

*11: Can not be fitted with Trip command indicator or Fault trip switch2.

Switch-disconnectors

Compamy name :	Order number :						
Quantity / Delivery time request	Units Year Month Date						
Enter your choice in the boxes p	Enter your choice in the boxes provided						
1 Type	□AX106D □AX108D □AX110D □AX112D □AX116D						
2 Number of poles	□3-poles □4-poles						
3 Applicable main circuit voltage / Frequency	ACVHz						
4 Applicable standard / Standard ambient temperature	Applicable standard □40°C						
5 Types of Mounting	unting						
	Draw-out type □Standard drawout handleunits □Mal-insertion privention device □Strage drawout handleunits □Position switch Type ALXPA □Main circuit safety shutters ALXPB □Control circuit terminal cover □Test jumper *18 □Key lock on withdrawn position (Max. 2 can be installed)units ⇒□Silinder □KLS (□CSM1Z-E22M □CSM1Z-E22MA) □RONIS (□1351 □1351-1) □Proflux □KIRK □Racking interlock *2 *16 □Door interlock *1 *2 (Hinge position of distribution board door:□Right side □Left side) Line side : □Horizontal terminals □Vertical terminals □Front connections □Conductive adapter (AZX-1) *6 Load side : □Horizontal terminals □Vertical terminals □Front connections						
	Conductive adapter (AZX-1) * 6						
6 Operation method							
7 Trip Devices	□ Continuously-rated shunt trip device ACV, DCV □ Continuously-rated shunt trip device2 ACV, DCV □ Undervoltage trip device (Instantaneous trip type) ACV, DCV □ Undervoltage trip device (Time delay trip type) *16 ACV, DCV						
8 Other Accessories	Auxiliary switch 4c General Micro load Auxiliary switch 7c * 3 * 4 * 14 * 15 General ON-OFF Cycle Counter Inter-pole barrier * 5 OFF padlock lever * 7 Key lock (Lck-in OFF type) * 9 Silinder KLS (CSM1Z-E22M CSM1Z-E22MA) RONIS (1351 1351-1) Proflux KIRK Mechanical interlock * 9 * 13 * 15 Ready to close switch * 10 Trip command indicator * 13 IP cover * 12 * 14 Door flange * 13 * 14 IP20 IP31						
9 Special environments *18	□Unnecessary □Tropicalization(Fungus and moisture treatment) □Cold climate treatment □Anti-corrosion treatment						
10 Spare parts	Unnecessary Necessary (Contact TERASAKI for parts)						
11 Test report	□ Japanese □ English copies						
*1 : Contact TERASAKI to use in comb	initation with a door flange, IP *9 : Can not be fitted with auxiliary switch 7c. *10 : Can not be fitted with Trip command indicatior. *11 : Can not be fitted with Ready to close switch. *12 : Can not be fitted with Goor flange. *13 : Door flange can not be fitted with IP cover. uxiliary switch 4c. *14 : Contact TERASAKI to use in combination with a door interlock. *15 : Contact TERASAKI to use in combination with a racking interlock. *16 : Contact TERASAKI to use in combination with a mechanical interlock. *17 : Can not be fitted with Undervoltage trip devices. *18 : Coming soon.						

TERASAKI ELECTRIC (EUROPE) LTD. FILIAL SVERIGE

TERASAKI ELECTRIC (EUROPE) LTD. (United Kingdom)

TERASAKI ELECTRIC (EUROPE) LTD. SUCURSAL EN ESPAÑA

TERASAKI ELECTRIC (EUROPE) LTD. FILIALE ITALIA

TERASAKI Global Network

TERASAKI ELECTRIC CO., LTD. (Head Quarters, Japan)

TERASAKI ELECTRIC (M) SDN. BHD. (Malaysia)

TERASAKI CIRCUIT BREAKERS (S) PTE. LTD. TERASAKI ELECTRIC CO., (FAR EAST) PTE. LTD. (Singapore)

TERASAKI DO BRASIL LTDA. (Brazil)

TERASAKI ELECTRIC (SHANGHAI) CO., LTD.

TERASAKI ELECTRIC (CHINA) LTD.

Since 1971 when we established TERASAKI ELECTRIC Europe, our first overseas subsidiary, in the UK, we have assembled a global network of 10 overseas subsidiaries and 72 agents to provide sales and technical supports to customers worldwide.

Safety Notice

Carefully read instruction manual to ensure proper installation, connection, operation, handling and maintenance of the product.

TERASAKI ELECTRIC CO., LTD.

Head Office: 6-13-47 Kamihigashi, Hirano-ku, Osaka 547-0002, Japan Circuit Breaker Division: 6-13-47 Kamihigashi, Hirano-ku, Osaka 547-0002, Japan

TEL +81-6-6791-2763 **FAX** +81-6-6791-2732

int-sales@terasaki.co.jp https://www.terasaki.co.jp/